DOI QR코드

DOI QR Code

Flow Characteristics of R600a in an Adiabatic Capillary Tube

단열 모세관내 R600a의 유동 특성

  • Ku, Hak-Geun (Division of Refrigeration and Air-Conditioning Eng., TongMyong University)
  • 구학근 (동명대학교 냉동공조공학과)
  • Published : 2010.02.28

Abstract

In this paper, flow characteristics of R600a in an adiabatic capillary tube were investigated employing the homogeneous flow model. The model is based on fundamental equations of mass, energy and momentum which are solved simultaneously. Two friction factors(Churchill) and viscosity(McAdams) are comparatively used to investigate the flow characteristics. Thermodynamic and transport properties of R600a are calculated employing EES property code. Flow characteristics analysis of R600a in an adiabatic capillary tube is presented to offer the basic design data for the operating parameters. The operating parameters considered in this study include condensation temperature, evaporation temperature, subcooling degree and inner diameter tube of the adiabatic capillary tube. The main results were summarized as follows: condensation and evaporation temperature, inlet subcooling degree and inner diameter tube of an adiabatic capillary tube using R600a have an effect on length of an adiabatic capillary tube. The length of an adiabatic capillary tube using R600a is expressed to the correlation shown in Eq. (15).

본 논문은 균질유동모델을 적용하여 단열 모세관내 R600a의 유동 특성을 이론적으로 조사하였다. 이 모델은 시뮬레이션 해석에 필요한 기본적인 질량, 에너지, 운동량 방정식에 근거하고 있다. 또한 2개의 마찰인자와 점성계수모델을 이용하여 유동특성을 조사하였다. R600a의 열역학 및 전달 물성치는 EES 물성치 코드를 이용하여 계산하였다. 작동변수들에 대한 기초 설계자료를 제공하고자 단열 모세관내 R600a의 유동 특성을 분석하였다. 본 연구의 작동변수에는 응축온도, 증발온도, 과냉각도, 모세관의 직경이 있다. 주요 결과를 요약하면 다음과 같다. R600a용 단열 모세관내 응축온도, 증발온도, 과냉각도, 관직경은 모세관 전체길이에 영향을 준다. 즉 R600a용 모세관 전체길이는 식(15)와 같은 상관식으로 나타낸다.

Keywords

References

  1. P. K. Bansal and A. S. Rupasinghe, "An homogeneous model for adiabatic capillary tubes", Applied Thermal Engineering, Vol. 18, Nos. 3-4, 1998, pp. 207-219. https://doi.org/10.1016/S1359-4311(97)00016-1
  2. C. Melo, R.T.S. Ferreira, C. Boabaid Neto, J.M. Goncalves, M.M. Mezavila, "An experimental analysis of adiabatic capillary tubes", Applied Thermal Engineering, Vol. 19, pp. 669-684, 1999. https://doi.org/10.1016/S1359-4311(98)00062-3
  3. EES: Engineering Equation Solver, 2006. fChart Software Inc.
  4. B. Yun, H. Y. Park, K. C. Yoo and Y. C. Kim, "Air-conditioner cycle simulation using tube-by-tube method", Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 11, No. 4, pp. 499-510, 1999.
  5. E. Hihara and S. Tanaka, "Boiling heat transfer of carbon dioxide in horizontal tubes". Preliminary proceedings of the 4th IIR-Gustav Lorentzen conference on natural working fluids at Purdue, pp. 279-284, 2000.
  6. S. W. Churchill, "Frictional equation spans all fluid flow regimes, Chem. Eng., Vol. 84, pp. 91-92, 1977.
  7. W. H. McAdams, W. K. Wood and L. C. Heroman, "Vaporization inside horizontal tubes. II: Benzene-oil mixtures, Trans. ASME, Vol. 64, p. 193, 1942.