
한국 C0D/C4W학회 논문집

제 7 5권 제 7 호 년 2월 pp. 11-23

제품개발환경을 지원하기 위한 Event Calculus
기반의 워크플로우 모델링

이희정*, 서효원**

*정회원, 대구대학교 산업시스템공학과

**종신회원, 한국과학기술원 산업공학과

- 논문투고일: 2009. 09. 28
- 논문수정일: 2009. 11. 18
- 심사완료일: 2009. 12. 01

Workflow Modeling for Product Development Environments
based on Event Calculus

Heejung Lee* and Hyo-Won Suh**

ABSTRACT

A flexible and correct model of the activity flows is required for workflows in product development
environments. In particular, the design activity flows are not known until run-time, and conventional
approaches have limit to handle this situation because they cannot predefine all the potentially reach­
able paths. Thus, the structure of the workflow model must be flexible enough to describe variety in
workflow design and accommodate dynamic changes during workflow execution. In this paper, we pro­
vide the general primitive axioms and change patterns based on event calculus for dynamic workflow
specification and execution mechanisms in product development environments. Also, we describe how
to execute the workflow dynamically based on the workflow specification and workflow change pat­
terns using abductive planning technique.

Key words : workflow modeling, dynamic change, event calculus

1. Introduction

Workflow management systems (WfMS) are
currently the leading technology to cope with the
today's challenging environment. A workflow as the
automation of a process involves a set of partially
ordered activities to be undertaken by a set of
procedural rules[l,2]. Typically workflow design aims
at representing different flow of activities, capturing
all possible situations with normal activity flows,
without adjustment to a new situation.

Business activities and environments, as well as
many engineering branches in general, are highly
dynamic and subject to change. As the business
climate is increasin읺y dynamic and competitive
worldwide, redesign and optimization of existing
business processes become essential in most
organizations to gain better efficiency and eflectiveness

in the rapidly changing environments. Between
radical redesigns, business processes often have to be
adjusted over and over again. In addition to that,
software systems are confronted with evolution
requirements caused by technical advances. Technical
advances often lead to systems reconfiguration, such
as, replacement, updating of software components,
addition of new components, and change in component
interface. However, today's workflow systems are
often built in the same way as traditional approach
systems. That is, they are targeted at definite
scenarios and not designed to cope with a rapidly and
dramatically changing environment. To cope with
this problem, the flexible workflow management
issues have been a hot research topic.

Thus, our research objective is to develop a
framework for managing workflows in a formal and
orderly manner while allowing flexibility. Consequently,
this paper includes following topics:

• workflow specification based on event calculus
• workflow modification rules
• workflow execution based on abductive planning

and validation.

11

12 이회정, 서효원

The remainder of this paper is organized as
follows: Section 2 summarizes the related work and
technical background. Section 3 suggests the formal
workflow modeling method based on the logic
programming, i.e., event calculus. Section 4 provides
the workflow modification rules. Section 5 proposes
workflow execution mechanism applying abductive
planning technique, and also introduces the correctness
and soundness problems, which are likely to be
arisen in the logic programming. Section 6 contains
the implementation of the proposed approach, and
finally concluding remarks are described in section 7.

2. Related Work and Background

2.1 Product Development Environments
A product development process (PDP) is a set of

activities beginning with the perception of a market
opportunity and ending in the production, sale, and
delivery of a product. In the PDP many decisions
have to be made under uncertainty because of the
insufficient accuracy level of data and the iterative
feature. In addition, the PDP is for the most part
human-based creative work that depends greatly on
the specific knowledge of the people participating in
the process[기. The predictability and repeatability
that can be found in the manufactaing process are
not presented in the same degree in the PDP[4]. PDP
projects are implemented as a means of achieving an
organization's strategic plan and differ from each
other in operation because each project is unique.
Unique means that the product or service is different
in some distinguishing way from all other products
or services. Therefore, when we implement a PDP, a
new process needs to be designed fbr each case[4].
We call this a one-of-a-kind process, and every case
has its own process.

While the PDP is one of the most important
business processes fbr the sustainable success of
enterprise, the characteristics of the PDP make it a
challenge to manage it in an effective and autonomous
way. Workflow management systems (WfMS) have
been suggested as a potential solution to deal with
this, but only a few of them have focused on the
PDP, focusing rather on general business processes,
which are relatively simple, repetitive, and uncoupled.
For these reasons, flexible workflow management
issues, such as providing the ability of the workflow
processes to react to changes in the environment in a
consistent way, have been a hot research topic fbr the
last few years.

2.2 Workflow Flexibility
Traditional workflow management systems, including

production workflow systems, are process-oriented
and aim at structured workflows. In addition, it is
widely recognized that workflow management systems
should also provide flexibility. Much research on
flexible and adaptive workflow management systems
has been carried out by diverse approaches. We
summarize below three approaches in workflow
flexibility.

Process adaptation: Process adaptability focuses
on the ability of the workflow processes to react to
exceptional circumstances. Usually workflow changes
can take place at both workflow schema and the
workflow instance level, so workflow flexible
management should support both cases. One of the
well-established frameworks for adaptive process
management is the ADEPT2 change framework151,
which adequately deals with process changes during
run time by supporting the following fundamental
change requirements-support of structural adaptations at
both the workflow schema and the workflow
instance level, enabling a high level of abstraction
when defining process changes; of change operations;
and correctness of changes. CAKE2[6] and WASA2〔끼

support structural flexibilities at run time at the
workflow instance level. Both approaches support
only primitive changing such as adding or removing,
while ADEPT2 provides support for a wide range of
high-level change operations.

Other approaches include a case handling and a
rule-based approach"] While the traditional workflow
management deals primarily with the work item and
control flows, the case handling approach罔 focuses
on the case itself, e.g., the evaluation of a job
application or the decision on a traffic violation. The
central concept fbr case handling is the case and not
the activities or the routing. The case acts as a
primary driver to determine which activities are
enabled. On the other hand, AgentWorkP], based on
the rule-based approach, specifies exceptions and
necessary workflow flexibilities, using temporal
estimates to determine which remaining parts of
running workflows are affected by an exception, and
is able to perform suitable predictive adaptations.

Built-in flexibility: This approach deals with
workflow flexibility by leaving process fragments
unspecified at build time and by specifying the
missing parts during run time. This is more usefill in
cases where the process can be structured with partial
information by deferring uncertainty to run time.
Worklets[41 is an approach for dynamic flexibility and
evolution in workflows based on accepted ideas of
how people actually work (called Activity Theory). In

한국CAD/CAM학회 논문집 제 15 권 제 1호 2010년 2월

제품개발환경을 지원하기 위한 Event Calculus 기반의 워크플로우 모델링 13

Worklets, each task of a process instance may be
linked to a repertoire of actions, one of which is
contextually chosen at run time to carry out the task.
Pockets of flexibility[이 allow ad hoc changes and/or
b니ilding of workflows for highly flexible processes,
providing the ability to execute based on a partially
specified model, where the full specification of the
model is made at run time. A constraint-based
workflow modeK'마 combines the advantages of a
declarative style of modeling and allows ad hoc and
evolutionary changes, which makes it is possible
both to avoid the need for unnecessary changes and
restrictions using a more declarative style and to
provide support changes at the schema and instance
level.

Artificial Intelligence Planning: In the meantime,
methods from the artificial intelligence planning
community enable composition, adaptation, and
synthesis of processes, thus providing the means to
expand predefined process libraries to accommodate
new situations and requirements. In addition, this
community provides techniques for modifying
activated processes in response to run-time failures
and unexpected events. Two automated plan
generation methods lend themselves most naturally
to the synthesis of new processes from libraries of
previously defined processes. Hierarchical task
network (HTN) planning"" synthesizes plans using
libraries of processes (referred to as task network)
defined over multiple levels of abstraction. Planning
consists of incrementally refining tasks at high levels
of abstraction by applying more refined task networks,
eventually bottoming out in a set of directly executable
tasks. HTN planning is well-suited to workflow
management, given the similarity between processes
and task networks. Case-based planning["，i기 generates
new plans for a given situation and task by retrieving
solutions for similar problems from a previously
defined case library, and then adapting them to meet
the requirements of the current situation. As such,
case-based planning methods provide a way to build
an experience with previously defined processes,
providing adaptation to suit new conditions and
requirements.

2.3 Event Calculus
The event calculus is based on axioms concerning

notions of events, properties, and the time points at
which the properties hold. The following primitives
present the essentials of the event calculus[14].

• holds w P x T
:holds(p, t) means that property peP is true at

time ZgT.
• happens 匚 E x T
:happens(e, t) means that event eeE occurs at
time ZgT.

• initiates o E x p x T
:initiates(e, p, t) means that if event eeE occurs at
time ?gT, it will initiate property peP.

• terminates o E x p x T
:terminates(e, p, t) means that if event eeE occurs
at time ZgT, it will terminate property peP.

• clipped c T x p x T
:clipped(tb p,扳 means that property /?gP is
terminated between times ^gT and

• initially c P
:initially(p) means that property holds from
time OeT.

• < c T x T
:standard order relation for time ZgT.

Based on these primitives, the following axiom
can be defined,

Axiom 1. (Basic Event Calculus)
• holds(p, t) <— initially(p) A clipped(0, p, t).
• holds(p, t) <— happens(e, t0) A initiates(e, p, t© A
t()<t A ^clippedfto, p, t).

• clipped(t(), p, t) <r- happens(e\ t') A terminates
(e‘, p, t') A t()< t' <t.

Axiom 1 means that a property p holds at the time
t if p holds initially or for the period after an event e
happens at time 而，and there exists no such an event
e' which happens between t0 and t and terminates the
property p.

3. Workflow Specification based on
Event Calculus

The various workflow modeling techniques differ
slightly in the extent to which they provide the
ability to model different domain and system
perspectives1^15 j. The control flow perspective describes
activities and their execution ordering through
different constructors, which permits execution-flow
control. The data perspective deals with business and
processing data, which is layered on top of the
control perspective. The resource perspective provides
an organizational structure anchor to the workflow in
the form of human and device roles responsible for
executing activities. The operational perspective
describes element actions executed by activity, where
the actions map into underlying applications. Ideally,
what might be needed is the development of a single
and holistic technique that could effectively represent

한국CAD/CAM학회 논문집 제 15권 제 ! 호 2010년 2월

14 이회정, 서효원

all modeling perspectives in a thorough and concise
form and hence be applicable in all modeling
situation.

Clearly, the control flow perspective provides an
essential insight into a workflow specification's
effectiveness. In this paper, we are interested in
catching the control flow perspectives of workflow
and propose a formal framework for specifying and
executing workflows based on the event calculus. To
the best author's knowledge, the framework for
specifying and executing workflows based on the
event calculus was first proposed by Cicekli and
Yildirim[16]. They have demonstrated how the event
calculus might be extended to describe the specification
and execution of activities in a workflow. However,
they only deal with the routing rules without
activity's state transition and dynamic environment.

The event calculus is the formalism reasoning
about time and change叫.It uses general rules to
derive that a new property holds as the result of the
event. With the narrative basis of the event
calculus卩이 we can cope with the abnormal situation
during workflow enactment as well as standard
workflow representation. An important feature of the
event calculus is that it can be extended, without too
much difficulty, to deal with some problems that are
extremely hard to represent using other formal
languages.

The workflow specification can be described by
the basic axiom (Worl^flow Event Calculus : WEC),
the state transition (Wsta(e), and the routing control
(luting)- The action in Wstate means any event that is
considered relevant in a process involving routing of
a workflow. The state in Wstate means the property
that is effect from relevant action. The routings in
Wmutins are the temporal relationship or associations
among actions, and consist of happens clauses and
ordering of time points. Workflow Event Calculus
(WEC) can be defined as follows.

Axiom 2. (WEC)
• holds(state(activity), t)
<-mitially(state(activity)) /\ ~Iclipped(O,state(activity),

机
• holds(state(activity), t)
<-happens(action(activity), initiates (action

(activity), state(activity), A t0 <t A ~blipped(t(),
state(activity)} t).

• clippedfto, state(activity), t)。happens(action'
(activity), t，，terminates (action '(activity), state
(activity), tJ)A < ^ < t.

WEC means that a state(activity) holds at time t if
a state(activity) holds initially or fbr the period after

an action(activity) happens at time 而，and there exists
no such an action "(activity) which between t0 and t
and terminates the state(activity). Example 1 means
that the activity is running at time t if it holds initially
or fbr the period after run action at time 如 and there
is no action which happens between t0 and t and
terminates its running state.

Example 1.
• h시ds(running(activity), t) <— initially(rummg(cictiyity))
A「clipped(0, running(activity), t).

• holds(running(activity), t)—happens(run (activity), t@
initiates(run(activity), running(activity),切

A to <t A ~^clipped(t0, running(activity), t).
• clippedfto, runnmg(activity), t) ^happens(suspend
(activity), tr) /I (terminates(suspend(activity),
nmning(activity), f) V termmates(abort(activity),
running(activity), t，)) A t0 < < t.

3.1 State Transition (Wstate)
The individual activity instance of a workflow will

change its state in response to the actions. The
descriptions of the states are as follows.

• not initiated: if a workflow instance has been
created, then all activities in the workflow are
initially set to the not initiated states.

• initiated', an activity instance has been created,
but the activity has not yet fulfilled the conditions
to cause it to start execution.

• running-, an activity instance is processing.
• completed', an activity instance has fulfilled the
conditions fbr completion.

• suspended', an activity instance is quiescent.
• aborted: the execution of an activity instance has
been stopped before its normal completion.

Fig. 1 shows how the related actions (ie, trigger,
start, restart, complete, suspend, abort) change the
state of an activity, and which state transitions are
permissible.

한국CAD/CAM학회 논문집 제 15 권 제 1호 2010년 2월

제품개발환경을 지원하기 위한 Event Calculus 기반의 워크플로우 모델링 15

In this paper initiates and terminates predicates
are used to specify how the 어ate of an activity can
change. In addition to defining which states they
initiate or terminate, the required preconditions for
activating these predicates can be specified using
holds predicate. Therefore all state transitions can be
specified in terms of a set of initiates, terminates, and
holds clauses as follows.

• (S^ initiates(action(activity), state(activity), t)
holds(precondition(activity), t)

• (S2) terminates(action(activity), state(activity), t)
<-holds(precondition(activity), t).

(Si) or (S2) means that if a precondition (activity)
holds at time t, then action(activity) occurs at the
same time and will initiate state(activity) or
terminates state(activity) respectively. The functional
arguments in (S〕) and (S2) are represented as
[actionjaame, statejiame, preconditionjiame]. We
formalize all state transitions using (S】)and (S2) in
axioms 3〜8.

Axiom 3. (notinitiated state : Ns}ate)
•V i, initially (not_initiated(activity^).
*(S2) [action, state, precondition]
=[(start, abort), not_imtiated, not initiated].
:All activities are in notjntiated states from initial

time. If an activity is in a notjnitiated state and one
of following actions trigger or abort occurs at time t,
then the action terminates notjnitiated(activity).

Axiom 4. (initiated state : Istale)
•(Si) [action, state, precondition]
=([start, initiated, notjnitiated], [rework,

initiated, (running, completed, suspend)]}.
• (S' [action, state, precondition]
=[(run, abort), initiated, initiated].
:If an activity is in a not initated state and an

action trigger occurs at time t, then the action
initiates initiated(activity). If an activity is in one of
following states, running or suspended state and an
action restart occurs at time Z, then the action
initiates mitiated(activity). If an activity is in an
initiated state and one of following actions start or
abort occurs at time t, then the action terminates
initiated(activity).

Axiom 5. (running state : Rstate)
• (S；) [action, state, precondition] = {[run, running,

initiated], [resume, running, suspended]}.
• (S2) [action, state, precondition] = [(suspend,

complete, abort, rework), running, running].
:If an activity is in an initiated or a suspended

state and respectively an action start or resume
occurs at time then the action initiates running
(activity). If an activity is in a running state and one
of actions following suspend, complete, abort, or
restart occurs at time Z, then the action terminates
running(activity).

Axiom 6. (suspended state : Sstal()
• (Sj) [action, state, precondition] = [suspend,

suspended, running].
• (S2) [action, state, precondition] = [(abort, resume,

rework), suspended, suspended].
:If an activity is in a running state and an action

suspend occurs at time t, then the action initiates
suspended(activity). If an activity is in a suspended
state and one of following actions abort, resume, or
restart occurs at time t, then the action terminates
suspended (activity).

Axiom 7. (completed state : Cstate)
• (SJ [action, state, precondition]
=[complete, completed, running].
• (S2) [action, state, precondition]
=[rework, completed, completed].
:If an activity is in a running state and an action

complete occurs at time t, then the action initiates
completed(activity). Notice that there is no action
terminating completed(activity).

Axiom 8. (aborted state : Astate)
• (Si) [action, state, precondition] = [abort, aborted,

(notjnitiated, initiated, running, suspended)].
:If an activity is in one of following states,

notjnitiated, initiated, running, or suspended and an
action abort occurs at time then the action initiates
aborted(activity). Notice that there is no action
terminating aborted(activity).

3.2 Workflow Routing Controls (Wrouting)
Sequences and dependences among activities can

be specified in several ways: two activities can be
directly connected, with the meaning that, as soon as
the predecessor is completed, the successor is ready
for execution. In all other cases, connections among
activities are performed by special-purpose routing
rules: splits and joins. Compositions of splits and
joins may be used to represent iterations or other
complex routing structures"위.

A split is preceded by one activity, ie, predecessor,
and followed by many activities, i.e., successors.
Splits are classified as And-Split and Or-Split.

• And-Split: after the predecessor is completed, all
successors are to run.

• Or-Split'. each successor is associated with a

한국CAD/CAM학회 논문집 제 15권 제 1 호 2010년 2월

16 이희정, 서효원

branch condition, and after the predecessor is
completed, conditions are evaluated and only
successors with a true condition are to run.

A“ Join is preceded by many activities, i.e.,
predecessors, and followed by one activity, i.e.,
successor. Joins are classified as And-Join and Or-
Join.

• And-Join-. o끼y after all predecessors are
completed, a successor is to run.

• Or-Join: the successor is to run every time
whenever a predecessor is completed.

Axiom 9. (Serial)
• initiates(trigger(Y), initiated(Y), t) holds(path(X,

Y)f t) holds(completed(X), t).
:There is a path between a predecessor X and a
successor K and Y is initiated as soon as X is
completed (Fig. 2-a).

Axiom 10. (And-Split)
• initiatesftriggerfY,<), initiated(Yit) <r- hol(h(path

(XfYi),t) holds(completed(X), t).
• initiates(trigger(Y2), initiated^, t) s holdsfpath
(X,爲,t) holds(completed(X), t).

• initiatesftriggerfY^), initiated^, t)) holds(path
(X, ¥„), t) holds(completed(X)f t).
:There are paths between a predecessor X and

successors Yh Y2> …，匕 and all Yh Y2,…，Yn are
initiated after X is completed (Fig. 2-b).

Axiom 11. (Or-Split)
• initiates(trigger(Yi), initiated(Y]), t) J holds(path(X,

Y]), t) A holds(eondition(XYi),t) A holdsfcompleted
(冷,机

• initiatesfirigger (Y^, initiated(Y^f t) <— holds(path(X,
A holdsfconditionC^Y^, t) / holds(completed

(XE

• initiates(trigger (Y^), mitiatedfY,), t) <- holds(path(X,
Y^, t) A holds^onditionfXYf), t) / holds(completed
(XE
:There are paths between a predecessor X and

successors Yh Y2, Ym and after the predecessor X
is completed, conditionfXYi) are evaluated and only
successors with a true condition are initiated (Fig. 2-
c).

Axiom 12. (And-Join)
• initiates(trigger(Y), initiated(Y), max(tb 松,…，

<-holds(path(Xb Y), rj /I holds(path(X2, Y)t 匂)

/I,…，holds(path(Xn> Y), Q /\ holds
(completed(Xi),")八 holds(completed(X^,切入

한국CAD/CAM학회 논문집 제 15권 제 1호 20K)년 2월

…，/\ holds(completed(X^,
:There are paths between predecessors Xb X2,…，

Xn and successors K and 쟈！!]y after all predecessors
Xb X2,…，Xn are completed, a successor Yis initiated
(Fig. 2-d).

Axiom 13. (Or-Join)
• initiates(trigger(Y), initiated(Y), t)

<—holds(path(X}, Y)r t) A holds(path(X2, Y), t)
,/I holdsfpathfX^ Y), t) A (holds(completed
(X})t t) V holds(completed(X2), t) V,…，V7
holds(completed(XJ, t)).
:There are paths between predecessors Xb X2,…，

X and successor Y, and the successor Y is initiated
every time whenever any predecessor (i = 1, 2,…，
n) is completed. Generally Or-Join definition is not
easy in workflow context, and many applications use
the Or-Join term as exclusive join (XOR-Join)
instead. In this paper, Or-Join is considered as
iterative join in that the activities arriving later at
joining point cannot be started immediately but in the
initiated states until the earlier (in running) will be
completed, suspended, or aborted (Fig. 2-e).

Axiom 14. (Loop)
• initiates(triggerfY}), initiated(Yj), t)
<—holds(path(Xm Y/), t) A holds(loopcondition
(XnYi), t) A holds(completed(X^, t).

• initiates(trigger(Xi), initiated(X]), t)
<-holdsfpathfY^ XJ, t) Aholds^ompletedfY^, t).
:Like Or-Split, a branch activity X in a loop can

be associated with a loop condition, which is
evaluated whenever the activity is completed. A
merge activity 出 in a loop can be considered as a
successor in Or-Join. In a loop, the merge activity is
in a completed state, because the merge activity has
already been done (Fig. 2-f).

Now we look at how the routing axioms (电妬嚟)

can be used to specify the workflow process by an
example. Considering the workflow in Fig. 3, there
are 12 activities indexed by from A to L> and flow
and the routing controls such as the And-Split^ Or-

(d) And-Join (e) Or-Jom (i) Loop

I度흠, 2. Workflow routings.

제품개발환경을 지원하기 위한 Event Calculus 기반의 워크플로우 모델링 17

Fig. 3. Workflow example.

/^Serial*/
initiates(start(A), initiated(A), tO)
^—holds(path(begin,A),tO) A holds(completed(begin), tO).
initiates(start(B). initiated(B), tl)
^holds(path(A,B), tl) A holds(completed(A),tl).
initiates(start(G), initiated^G), t6)
<—holds(path(F, G), t6) A holds(completed(F),t6).
mitiates(start(end), mitiated(end),tl 1)
«—holds(path(K,end),tU)八 holds(completed(K),Hi).
/*And-Split 히
initiates(start(C), initiated(C),t2)
<—holds(path(B, C), t2)八 holds(completed(B),t2).
initiates(start(D), initiated(D), tl)
<^holds(path(B,D), t2) A holds(completed(B), t2).
mitiates(start(E), initiated(E), t2)
—holds(path(B,E),t2) / holds(completed(B),t2)._______
/*And-Join*/
initiates(start(F), initiated(F), max(t3, t4, t5))
*—holds(path(C,F),t3) A holds(path(D,F), t4)
A holds(path(E, F),t5)八 holds(completed(C), t3)
八 kolds(completed(D) ,t4) /I h이ds(compieted(E)j5)
/*Or-SpHt 히
initiates(start(H),initiated(H),t7) 시ds(path(G,H),t7)
八 holds(condition(GH)tt7) A holds(completed(G),t7).
initiates(start(I), initiated(I), t7) —h 시ds(path(G,I),i7)
/I holds(condition(GI),t7) A holds(completed(G), t7).
/*Or-Join*/
initiates(start(J), initiated(J), t8)
—lwlds(path(H,J)J8) A holds(path(I,J), t8)
八(holds(completed(H),t8) holds(completed(I)j8)).
/*Loop*/
initiates(start(K), initiated(K), t9) <—holds(path(J,K), t9)
A holds(condition(JK),t9) A holds(completed(J)j9).
initiates(start(L),initiated(L),t9) ^~holds(path(J,L),t9)
A holds(condition(JL),t9) holds (completedJ), t9).
initiates(start(G),mitiated(G),t^O)
Sds(path(L,G)!0) 八 h시ds(completed(L)0).

Fig. 4. Workflow specification example.

Spit, And-Join, and Or-Join to model serial,
conditional, parallel and loop routing. While parallel
routing normally commences with And-Split and
concludes with And-Join, conditional and loop
routing commence with Or-Split and with Or-Join.
Fig. 4 shows the workflow specification for the Fig. 3.

4. Workflow Change Patterns

To design workflows in changing and dynamic
environments, a flexible, correct, and rapid realization
of models of the activity flow is required. We are
concerned with dynamic structural change. 'StructuraF

means that we are concerned with changes to the
structure of workflows; we are not concerned in this
paper such as changes to the value of an application
data variable. 'Dynamic, means that we are required
to make the change 4on the fly' in the midst of
continuous execution of the changing procedure. Not
only the correctness and consistency before and after
dynamic change, but also the state of an activity in a
workflow is the major criteria fbr deciding whether a
specific structural change can be applied to it or not.
As an example, the new addition of an activity
between the two successive activities should not be
permitted if the successor was already completed.

In particular, techniques are needed to design
workflows capable of adapting themselves effectively
when dynamic situation occurs during process
execution. In this section, we present an approach to
flexible workflow design based on patterns applying
WEC, Ws!ate, and Wroutins of the previous section. Now
we define patterns that can frequently occ나t in
workflow modeling.

When a new activity is inserted into an existing
workflow, new paths must be added (by initiating the
new path) and old paths must be removed (by
terminating the old path) while maintaining the
correctness and consistency of the workflow.

Let be a finite set of patterns 17=化，PA P()S,
Pop}. A pattern P, e 77is defined as 2-tuple, Pj =
<Name, Template>, where, the name of a pattern
should be meaningful to indicate its purpose and be
unique to identify the pattern, and the template of a
pattern is defined as a non empty set of event
calculus.

4.1. Add Pattern: Pa
Description: A change is of type Pa if a new

activity is introduced between the exiting activities in
serial, parallel, or conditional routings.

Pa = <Add, Ta> (see Fig. 5)
/* Initial condition */
holds(path(X, Y), t) /\ (holds(notJntiated(Y), t) V
holds(initiated(Y), t)).
/* Change template : Ta */
step 1 : initiates(add(X, New), path(X, New), t).
step 2 : imtiates(add(New, Y), path(New, Y), t).
step 3 : terminates(delete(X, Y), path(X, Y), t).

State constraints: The add pattern can be applied
to following situations: serial, parallel (And-Split and
And-Join) or conditional (Or-Split and Or-Joiri).
Furthermore, the applicability of the add pattern
depends on the state of the activities in a workflow.
To avoid the addition of a new activity as a not-

한국CAD/CAM학회 논문집 제 15권 제 1호 2010년 2월

18 이희정, 서효원

accepted state such as running or completed, we
require that all successors of activity New must be in
one of the states notj,nitiated or initiated. The
predecessor of activity New may be in an arbitrary
state.

Fig. 5. Add procedure.

initial

一

hoWpathfX. Y), t) a (holch(notJnitiats<i(Y). t)
v holdstmitiated^Y),()) b成湖游@泌成 New, pathfX,N^). t)

c幺-* 스
iniiiatesfadc/^ew, Y), puih(New, Yj, t)

step3 /SX
為3

tgrminates(dele!e(X, Y), path(X, Y),()

4.2. D이ete Pattern: Pd
Description: A change is of type 已 if an activity is

removed between the exiting activities in serial,
parallel, or conditional routings.

Pd h <Delete, TJ> (see Fig. 6)
/* Initial condition */
holds(path(X, Y), t) A holds(path(Y, Z), t) A
(holds(not_intiated(Y), t) Vholds(initiated(Y), t)).
/* Change template : Td */
step 1 : initiates(add(X, Z), path(X, Z), t).
step 2 : terminates(delete(X, Y)f path(X, Y), t).
step 3 : terminates(delete(Y, Z), path(Y} Z), t).

State constraints: The delete pattern can be also
applied to following situations: serial, parallel (And-
Split and And-Join) or conditional (Or-Split and Or-
Join) routings. Furthermore, the applicability of the
delete pattern also depends on the state of the
activities in a workflow. The deletions of an activity
Y is possible, if the activity which is going to be
deleted is either in the state notj,nitiated 야r initiated.

Fig. 6. Delete procedure.

订Hti 하

◎AY흐kND
holds(path(X, Y), t) a holdsfpath^Z). t) a
(holdsfnotjnitiatedfl), I) vholds(iuilicaed(¥)r t))

step I ------------■、、、
《区S二Y호a소2〉

imUales(afH(X,Z)t path(X,Z), t)

5^2 尸 f、
CE>-kX>

teriHintites(delete(X, i), paih(X.T)-1)

step 3 _______

u호厂흐)

!erminates(de!eie(}', Z), pathf'Y.Z), I)

4.3. Replace Pattern: Pr
Description: A change is of type replace

(composition of add and delete) if an activity is
replaced by another activity in serial, parallel, or
conditional routings. The replace pattern always can

be composed of Pa and Pd pattern.

Pr = <Replace, T^>
Tr Ta A Td

4.4. Reorder Pattern: Po = PosAPop
Description: A change is of type Po if activities are

reordered without addition or removal. Reorder
pattern is comprised of the followings: serializing
activities that were previou이y allowed to run in
parallel (Pos) and parallelizing activities that were
pwviou이y allowed to run in serial (P여). N여ice that
conditionalizing activities th건 previou이y were
constrained to execute in parallel and vice versa are
not involved in the structural change.

Pos = <Reorders, (see Fig. 7)
/* Initial condition 찌
holds(path(X, Y), t) Aholds(path(X, Z), t) A
holds(path(Y, W), t) A holds(path(Z, W), t)
A ~holds(completed(Z), t).
/* Change template : T脇 */

step 1: initiates(add(Y, Z), path(Y, Z), t).
step 2 : terminates(delete(X, Z), path(X, Z), t).
step 3 : terminates(delete(Y, Z), path(Y, W), t).

State constraint: In Fig. 7, a workflow, which
originally does activity Y and Z at the same time,
makes a dynamic change to its procedure by
performing activity Z after activity Y. Although 하he
procedure looks safe after the change, there are
problems that could potentially surface during the
change[M,19]. For example, after activity X is
completed, the successors Y and Z start to run in
parallel, and there may happen that the activity Y is
still running and the activity Z is already completed
after some while. If the dynamic change Pos on the
fly occurs at this time, the activity W will be started
to run without completing the activity Y due to the
routing rules, and this is 줬n undesired result. This
undesirable bug can be avoided by simply writing
holds (completed(Z), t).

Fig. 7. Reorder prtKedure (Serializing).

/OX、
호

lu>lds(path(X, Y), t) a holds(path(X,2), t)
holdsfpathf Y. W), I) -5 holds(path(2, W), i)
人-^holds(compIeted(Z). i).

岫Ur
imliates(add(¥,Z), paik(l',Z), t)

terminatns(dtilete(X,Z), path(X.Z), t)

포

termina!es(dele!e(Y, W), path(Y, W), t)

한국CAD/CAM학회 논문집 제 15 권 제 1호 20W년 으월

제품개발환경을 지원하기 위한 Event Calculus 기반의 워크플로우 모델링 19

P叩-=<Reorderp Tl)p> (see Fig. 8)
/* Initial condition */
holds(path(X, Y), t) holds(path(Y, Z) holds(path(Z,
n t). '
/* Change template : Top 率/
step 1 : initiates(add(X, Z), path(X Z丿，t).
step 2 : imtiates(add(Y, W), path(Y, W), t).
step 3 : terminates (delete^ Z), path(Yf W), t).

State constraints: In Fig. 8, a workflow, which
originally executes activity Y and Z in sequential
order, makes a dynamic change to its procedure by
performing activity Y and Z in parallel, i.e., there is
no ordering relationship between the activities Y and
Z. In this change, there is no problem and it is always
possible to transfer.

Fig. 8. Reorder procedure (Parallelizing).

5. Workflow Execution and Planning

The workflow management system is composed of
two main components: the process definition and
workflow enactment service. The process definition
is used in build-time to generate a computerized and
executable definition of a workflow. In commercial
workflow management systems, it provides graphical
modeling tools and helps the designer to design, test,
and validate workflow process. In this paper, the
process definition is characterized by the workflow
specification applying event calculus proposed in
section 3. The workflow enactment service is
composed of' a set of software modules for creating
and controlling instances of processes during run­
time, and provides the run-time environment in
which workflow management systems also manage
the execution and s©q니巴King of the various activities
of the workflow.

5.1. Abductive Planning
We describe how to execute the workflow

dynamically based on the workflow specification (in
section 3) and workflow change patterns (in section
4) using abductive planning technique. For the
dynamic workflow execution, we apply the abductive
planning to the event calculus, and abductive

planning will produce the ordering of actions which
comprise the workflow. We firstly give a brief
introduction to the abductive inference rule. At first
the rule of inference called resolution which is based
on modus ponens augmented with unification is as
follows: 'from p v— q and q, we can infer p\ While
our workflow execution is based on the abduction
inference rule: ""from p J q andp, we can infer q'

That is, given a rule p — q and a feet p, abduction
g엱derates an explanation for p by stating the fact q.
This is not a sound inference rule, however, because
q does not logically follow from p J q and p.
Therefore, q must be seen a hypothetical explanation.
If the implication p ・ q corresponds to the notion of
causality, then abduction will generate plausible
explanations.

Now let's explore how this abductive inference
rule can be applied to the dynamic workflow
execution. A plan consists of the set of facts defined
by the 하redicates happens and temporal ordering
fonnulae (<). This set can represent a plan because it
defines the actions that happen and the time ordering
between actions.

Definition 1, A plan P is a s이ution for a goal G
with respect to the theory T and history H such as T
A H A P infer G where, T 盪 WEC A 风皿 八

仇廁华人n

This definition means that any planning problem P
consists of finding one or more valid and possible
paths can be generated irom the workflow specification
theory T and the current history H to a given goal G.
History H is initially empty and will be updated as H
A P every time plan P is generated by a dynamic
goal state. Jf a desired goal G is related to the
modifications of the existing workflow, then the
structure of a workflow c쵸哉 be changed by a set of
primitive provided patterns.

We present examples to show how the dynamic
workflow paths and related activity states are
generated and stored through the abductive planning.
Let's see the workflow example in Fig. 3 again.
Initially all activities are in the not initiated states
and imtiated(begin) sets to tnie. If our desired goal
state is holds(completed(B), 〃，then one possible plan
P (there can be so many solutions in이ading repetition
of happens (suspend^, q) and happens (resume(X),
切 is the conj印ictBn of the following happens and
tempor이 ordering formulae (<).

P = [happens(trigger(A),tl), happens(start(A),t2),
happens(complete(A),t3), happens(trigger(B), t3), happens
(start(B),t4), happens(complete(B),t5), tl<t2, t2<t3,
t3<t4, t.4<t5].

한국CAD/CAM학회 논문집 제 15 권 제 1 호 2010년 2월

20 이희정, 서효원

Fig. 9 is the abductive proof tree of the above
example, representing the top down search space of
possible paths using dynamic workflow specification
rules. This search space will be terminated until they
found the initial condition or adequate history H.

Now lefs assume that we are at time tnow(= t5 +
some time), i.e., both activities A and B were
completed, and we are now performing the parallel
activities C and D, and we have completed E, i.e.,
holds(running(C), tnow), holds(running(D), tnow), and
holds(completed(E), tnow). To make a dynamic
change by performing activity E after D serially
instead of parallel processing will fail because
change pattern Pos will preserve reasonable change
(Fig. 10). Without losing control, one can evaluate
the dynamic situation at workflow running time and
cope with any dynamic change.

Fig. 10. Example of dynamic change.

Given H which is updated as P holds(running
(C),編丿 /I holds(running(D), L為 /I holds(completed
(E), tnow) (Fig. 11), we assume next goal state G =
holds(completed(G), t), then the valid plan P' will be
generated (Fig. 12) as follows.

P = [happens(complete(C), tl), happens(complete(D),
t2), happens(trigger(F)f t3=max(tl,t2)), happens(start

(F), t4), happens(complete(F), t5), happens(trigger(G)f
t5), happens (start(G), t6), happens (complete(G), 17),
t3<t4, t4<t5, t5<t6, t6<t7].

completed

Fig. 11. Example of history.

Fig. 12. Example of planning result.

If our desired goal state G is like holds
(completed(K), t), which is for the last activity in the
workflow, abductive plan P is considered as workflow
scheduling to generate event notices for all activities
that can be performed.

5.2. Correctness and Soundness
Event calculus is an express representation language

for planning problem. Consider the following example,
taken from[20].

initially(r).
initiates(ei, p, t).
initiates(e2, q, t).
terminates(eh r, t) <r- holds(q, t).
terminates(e2, l t) 스- holds(p, t).

:the terminates rules define the context dependent
effect, i.e., e} terminates r if q holds, and e2
terminates r if p holds. Given the goal G = [holds(p,
t) A holds(q, t) A holds(r, t)J, the abductive planning
would find the following solution considered incorrect.

P = [happens(e}, ti), happens(e2, ", h < t, t2 < t].

This example shows that correctness problems
occur in the case of context dependent terminating
events, and all non-linear planners that allow for
such effects are incomplete and generally incorrect.
However, we can exclude such events because there
is no action in our workflow model that interferes
with each other in a context dependent way.

An abductive planning must meet certain constraints
to ensure the correct execution of the workflow at
run-time.

한국CAD/CAM학회 논문집 제 15 권 제 1호 2010년 2월

제품개발환경을 지원하기 위한 Event Calculus 기반의 워크플로우 모델링 21

First, an arbitrary goal state holds(completed
(activity), t) should be true in a workflow instance by
the appropriate plan. Consider the following example,

• initiates (trigger (B), initiated(B), t)
<一 holds(path(A, B), t) A holds(condition(AB), t)

八 holds(completed(A), t).
• initiates(trigger(C), initiated(C), t)

holds(path(A, C), t) A holds(conditionfAC), t)
/I holds(completed(A), t).

• initiates(trigger(D), initiated(D), t)
《一 holds(path(B, D), t) A holds(path(C, D), t) A
holds(completed(B), t) A holds(completed(C), t).

Given the goal G = holds(completed(D), t), the
abductive planning would find the failing intermediate
s이나tion. As 아lown in Fig. 13, in order that holds
(completed(D), t) should be true, both holds(completed
(B), t) and holds(completed(C), t) are to be true,
However, this could never happen, when path(A, B)
and path(A, C) are alternative, so only one of
condition(AB) and condition (A C) should hold at the
time activity A is completed.

Second, the workflow will be finished eventually
and at that moment there should not be any activity
that is running. Consider the following example,

• initiates (trigger (B), initiated(B), t)
holds(path(A, B), t) A holds(completed(A), t).

• initiates(trigger(B), initiated(B), t)
holds(path(C, B), t) A holds(completed(C), t).

• initiates (trigger (C), imtiated(C), t)
holds(path(A, C), t) A holds(completed(A), t).

• initiates(trigger(D), initiated(D), t)
<—holds(path(C, D), t) A holds(completed(C), t).

Given the goal G = holds(completed(D), t), the
abductive planning would find the valid solution. But
after the workflow is correctly completed, there still
exists any live activity in the completed workflow.
As shown in Fig. 14, after activity C is completed,
the action happens (trigger (B), t) and happens (trigger
(D), t) will be fired concurrently, and then the
activity D will be running and then completed
normally. However activity B and C in the loop are
can be still in running states.

These two results are not desired, and we can
avoid these problems by the following methods.
Cleary the parallel flows started by an And-Split
should not be joined by an Or-Join. The conditional
flows created via an Or-Split should not be joined by
an And-Join. In Summary, an And-Split should be
completed by an And-Join and an Or-Split should be
complemented by an Or-Join. Furthermore, the loop

is controlled by Or-Split and Or-Join instead of And-
Join and And-splitto preserve the finite iteration.

holds(completed(D), t)
/E、、、、

And-Join '、、

holds(completed(B), t) holds(completed(C), t)
▼'、、、、 .

happens(mitiated(B), 〃''、、段-‘吧.^happens(initiated(C), t)

holds(completed(A), t)

Fig. 13. Soundness Problem (1)

holds(completed(D), t)

holds(completed(C), t)-、、、

f Sop

holds (completed(B), t)，
A

holds(completed(A), t)

Fig. 14. Soundness Problem (2).

6. Implementation

The proposed approach can be implemented in
several different ways. One approach is to write the
axioms directly in Prolog. However, this will cause
an infinite loop, because the definition of holds
predicate includes calls to initiates or terminates
predicate that in turn includes calls to holds. One
such abductive event calculus planner avoiding this
problem is due to[2I]. The following's behavior is
equivalent to that of the vanilla meta-interpreter with
the object-level clause for 為.■- k2> 為

demo([X() I GJ) :- axiom(Ah GJ, append(G2, /%,
…，儿？ I GJ, G3), demo(G3)

This is an abductive meta-interpreter for abduction
with negation-as-feilure, with built-in features for
handling event calculus queries; we modify this
event calculus planner here to demonstrate how
possible paths can be generated and stored. As the
number of activities in workflow increases, the
search space in this program also expands. We can
reduce this problem space by introducing the facts of
history H.

The workflow manager actually runs the workflow
specification. In normal situations, the manager starts
a workflow process by an initial plan for an initial

한국CAD/CAM학회 논문집 제 15 권 저〕1 호 2Q!0년 2월

22 이회정, 서효원

goal. Once the abnormal situation happens, the
workflow manager queries the new goal to cope with
this exceptional situation, and reschedule the
workflow process. The proposed approach can be
also used as a quick tool in prototyping applications
or simulations, thus providing opportunities to
analyze the efficiency of the workflows.

The ideas discussed in this paper have been
implemented with SWI-Prolog. The example workflow
as shown in Fig. 15 can be expressed in Prolog
syntax and the workflow planning solution R will be
obtained by the query template, e.g. abdemo([holds
(state(activity),t), ... holds(state(activity),t)],R), where,
R is solution which consists of actions and temporal
orders. For example, after execution of queries such
as 'abdemoOJioldsfcompleted^, t)], R)^ and '사)demo
([holds(path(f, r)), t), holds(path(r, g)), t), holds(neg
(path(f fg)), t)], R)\ which can be interpreted as
applying state transition and change pattern respectively,
solution R will be displayed like Fig. 16. First solution
depicts the state transition results of activities C, D,
and F, and second solution shows the path change.
The Prolog file for abductive planner about this
example is partially shown in Appendix.

Fig. 15. Example workflow.

In this paper, we have presented an approach to the
dynamic workflow specification and execution applying
event calculus extensions. The approach is based on
modeling the general flow of activities and the
dynamic behavior separately. Major contribution of
the approach is related to the design of workflows in
changing and dynamic environment, while preserving

flexible and correct models of the activity flow. The
general primitive axioms and change patterns for
dynamic specification and execution mechanisms in
workflow management systems can provide a good
degree of flexibility and can be used in many
applications.

In this paper we have also shown that the activity
state transition and major types of routings (i.e.,
Serial, And-Split, Or-Split, And-Join, Or-Join, Loop)
can be expressed and how the dynamic workflow
paths and related activity states are generated and
stored through the abductive planning.

This paper focuses on flexible specifications and
evolutionary changes concerning the flow structure,
i.e., definition of the sequence in which activities
should be executed within a workflow. Future work
in this area includes the extensions of the analysis to
modification of other workflow characteristics such
as data control, information handling, or organizational
operations, which can be done by considering such
predicates as: activity(agent, input, output), role(agent,
activity).

Appendix

<Basic structure of abductive planner in Prolog
syntax그

// WEC //
• demo([holds(S, T2)\G1]) :- axiom(initiates(A> S,
T1),G2), axiom(happens(A, Tl), G3), axiom(befbre
(T1,T2), []), demo([not(clipped(Tl,S, T2))]), append
(G3,G2,G4), append(G4,Gl,G5), demo(Gs5).
// Workflow State Transition Rule //

• Axiom (initiates (action(Activity), state(Activity),
T), [holds(condition(Activity), T)J).

• Axiom(termiriates(action(Activity), state(Activity), T),
[holds(condition(Activity), T)]).
// Workflow Routing Rule //

• Axiomfinitiates(start(Activity), initiated(Activity),
T)), [holds(path(_,J,T),...,holds(path(_,J>'I), cond
(J}.. .,cond(J, holds(completed(Activity), 7),..holds
(completed(Actiyity), T)]).
// Workflow Changing Rule fbr Add //
• Change(X,New, Y,pa) abdemo(holds(path(X,New),
t), holds(path(New, Y),t), holds(n%(path(X,Y)),t)],R).
// Workflow Changing Rule fbr Delete //

• Change(X,Old,Y,pd) :- abdemo(holds(path(X, Y),t),
holds(neg(path(X, Old),t)), holds(neg(path(Old, Y)),t)],
R)-
// Workflow Changing Rule for Replace //

• Change(X,Old, New,Y,pr) :- Change(X,New, Xpa),
ChangefX.Old, Y,pd)
// Workflow Changing Rule fbr Reorder //

한국CAD/CAM학회 논문집 제 15 권 제 1호 2010년 2월

제품개발환경을 지원하기 위한 Event Calculus 기반의 워크플로우 모델링 23

• Change(X, Y,Z, W,pos) :- abdemo(holds(path(Y,Z),t),
holds(neg(path(X,Z)), t), holds(neg(path(^W)), t)],R).
// Workflow Initial Condition and History //

, axiom (initially(state(Activity)),[]).
• axiom^mtiallyfpathfActivity,Activity)) ̂]).
• axiom(cond(Activity, Activity)),[]).

References

1. WfMC, The Workflow Reference Model, WFMC-
TC-1003, Workflow Management Coalition, 1995,

2. WfMC, Terminology & Glossary, WFMC-TC-1011,
Workflow Management Coalition, 1996.

3. Muller, R., Greiner, U. and Rahm, E., uAgentWork:
A Workflow System Supporting Rule-based Work­
flow Adaptation", Data and Knowledge Engineering,
Vol. 51, pp. 223-256, 2004.

4. Adams, M., Hofstede, A., Edmond, D. and van der
Aalst, W. M. P., uWorklets: A Service-oriented Imple­
mentation of dynamic flexibility in Workflows", Coo-
pIS'06, pp. 291-308, 2006.

5. Reichert, M. and Dadam, P., Realizing Adaptive
Process-aware Information Systems with ADEPT2,
Ulmer Infbrmatik-Beri나ite, Nr:2013-08, 2008.

6. Minor, M., S사imalen, D., Koldehoff, A. and Berg­
mann, R., "Structural Adaptation of Workflows Sup­
ported by a Suspension Mechanism and by Case­
based Reasoning", WETICE'07, 2007.

7. Weske, M., Workflow Management Systems: Formal
Foundation, Conceptual Design, Implementation
Aspects, University of Munster, Habilitation Thesis,
2000.

8. van der Aalst, W. M. P., Weske, M. and Grunbauer,
D., "Case Handling: A New Paradigm for Business
Process Support", Data and Knowledge Engineering,
Vol. 53, pp. 129-162, 2005.

9. Sadiq, S., Sadiq, W. and Orlowska, M., "Pockets
of Exibility in Workflow Specifications", In: ER'01,
pp. 513-526, 2001.

10. Pesic, M., Schonenberg, H., Sidorova, N. and van
der Aalst, W. M. P., ''Constraint-based Workflow
Models: Change Made Easy", Coopls'07, pp. 77-
94, 2007.

11. Erol, K., Hendler, J. and Nau, D. S., Semantics for
Hierarchical Task-network Planning Technical
Report CS-TR-3239, Computer Science Department,
University of Maryland, 2004.

12. Hammond, K., Case-Based Planning: Viewing Plan­
ning as a Memory Task, Academic Press, 1989.

13. Velso, M.M Learning by Analogical Reasoning
in General Problem Sekving, Ph.D. Dissertation, Car­
negie Mellon University, Pittsburgh, PA, 1992.

14. Casati, F., Ceri, S., Pemici, B. and Pozzi, G, "Work­
flow Evolution", Data & Knowledge Engineering,
Vol. 24, pp. 211-238, 1998.

15. van der Aalst, W. M. P. and van Hee, K., Workflow
Management: Models, Methods, and Systems, The
MIT Press, 2002.

16. Cicekli, N. K. and Yildirim, Y, "Formalizing Work­
flows Using the Event Calculus”, LNCS, Vbl. 1873,
pp. 222-231, 2000.

17. Kowalski, R. A. and Sergot, M. J., "Logic-based
Calculus of Events", New Generation Computings
Vol. 4, pp. 67-95, 1986.

18. Shanahan, M. T., Solving the Frame Problem: A
Mathematical Investigation of the Common Sense
Law of Inertia, MIT Press, Cambridge, 1997.

19. van der Aalst, W. M. P., ''Exterminating the Dynamic
Change Bug: A Concrete Approach to Support Work­
flow Change”, Information Systems Frontier, Vbl. 3,
No. 3, pp. 297-317, 2001.

20. Missiaen, L., Bruynooghe, M. and Denecker, M.,
"C니ICA: A Planning System based on Event Cal-
cuhis", The Journal of Logic and Computation, Vol. 5,
No. 5, pp. 579-602, 1995.

21. Shanahan, M. T., "An Abductive Event Calculus
Planner", The Journal of Logic Programming,
Vol. 44, pp. 207-239, 2000.

이 희 정

1996년 한양대학교 산업공학과 학사

1998년 한국과학기술원 산업공학과 석사

2007년 한국과학기술원 산업공학과 박사

2003년 8월〜2008년 8월 삼성전자 개발

혁신팀 책임연구원

2008년 覆〜현재 대구대학교 산업시스

템공학과 전임강사

관심 분 야: Workflow Management,
PLM

서 효 원

1981년 연세대학교 기계공학과 학사

1983년 한국과학기술원 기계공학과 석사

1991년 West Virginia University 산업
공학과 박사

1983년〜198湼 대우중공업斧） 중앙연구

소 주임연구원

1992년〜1995년 생산기술연구원 생산시

스템센터 수석연구원

1996년〜현재 한국과학기술원 산업공학

과 교수

관심분야: CE/PDM/CPC/PLM, Workflow
Management/BPM, Ontology/
Knowledge Based System

한국CAD/CAM학회 논문집 제 15 권 제 1호 2010년 2월

