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ABSTRACT

A flexible and correct model of the activity flows is required for workflows in product development 
environments. In particular, the design activity flows are not known until run-time, and conventional 
approaches have limit to handle this situation because they cannot predefine all the potentially reach­
able paths. Thus, the structure of the workflow model must be flexible enough to describe variety in 
workflow design and accommodate dynamic changes during workflow execution. In this paper, we pro­
vide the general primitive axioms and change patterns based on event calculus for dynamic workflow 
specification and execution mechanisms in product development environments. Also, we describe how 
to execute the workflow dynamically based on the workflow specification and workflow change pat­
terns using abductive planning technique.
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1. Introduction

Workflow management systems (WfMS) are 
currently the leading technology to cope with the 
today's challenging environment. A workflow as the 
automation of a process involves a set of partially 
ordered activities to be undertaken by a set of 
procedural rules[l,2]. Typically workflow design aims 
at representing different flow of activities, capturing 
all possible situations with normal activity flows, 
without adjustment to a new situation.

Business activities and environments, as well as 
many engineering branches in general, are highly 
dynamic and subject to change. As the business 
climate is increasin읺y dynamic and competitive 
worldwide, redesign and optimization of existing 
business processes become essential in most 
organizations to gain better efficiency and eflectiveness 

in the rapidly changing environments. Between 
radical redesigns, business processes often have to be 
adjusted over and over again. In addition to that, 
software systems are confronted with evolution 
requirements caused by technical advances. Technical 
advances often lead to systems reconfiguration, such 
as, replacement, updating of software components, 
addition of new components, and change in component 
interface. However, today's workflow systems are 
often built in the same way as traditional approach 
systems. That is, they are targeted at definite 
scenarios and not designed to cope with a rapidly and 
dramatically changing environment. To cope with 
this problem, the flexible workflow management 
issues have been a hot research topic.

Thus, our research objective is to develop a 
framework for managing workflows in a formal and 
orderly manner while allowing flexibility. Consequently, 
this paper includes following topics:

• workflow specification based on event calculus
• workflow modification rules
• workflow execution based on abductive planning 

and validation.
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The remainder of this paper is organized as 
follows: Section 2 summarizes the related work and 
technical background. Section 3 suggests the formal 
workflow modeling method based on the logic 
programming, i.e., event calculus. Section 4 provides 
the workflow modification rules. Section 5 proposes 
workflow execution mechanism applying abductive 
planning technique, and also introduces the correctness 
and soundness problems, which are likely to be 
arisen in the logic programming. Section 6 contains 
the implementation of the proposed approach, and 
finally concluding remarks are described in section 7.

2. Related Work and Background

2.1 Product Development Environments
A product development process (PDP) is a set of 

activities beginning with the perception of a market 
opportunity and ending in the production, sale, and 
delivery of a product. In the PDP many decisions 
have to be made under uncertainty because of the 
insufficient accuracy level of data and the iterative 
feature. In addition, the PDP is for the most part 
human-based creative work that depends greatly on 
the specific knowledge of the people participating in 
the process[기. The predictability and repeatability 
that can be found in the manufactaing process are 
not presented in the same degree in the PDP[4]. PDP 
projects are implemented as a means of achieving an 
organization's strategic plan and differ from each 
other in operation because each project is unique. 
Unique means that the product or service is different 
in some distinguishing way from all other products 
or services. Therefore, when we implement a PDP, a 
new process needs to be designed fbr each case[4]. 
We call this a one-of-a-kind process, and every case 
has its own process.

While the PDP is one of the most important 
business processes fbr the sustainable success of 
enterprise, the characteristics of the PDP make it a 
challenge to manage it in an effective and autonomous 
way. Workflow management systems (WfMS) have 
been suggested as a potential solution to deal with 
this, but only a few of them have focused on the 
PDP, focusing rather on general business processes, 
which are relatively simple, repetitive, and uncoupled. 
For these reasons, flexible workflow management 
issues, such as providing the ability of the workflow 
processes to react to changes in the environment in a 
consistent way, have been a hot research topic fbr the 
last few years.

2.2 Workflow Flexibility
Traditional workflow management systems, including 

production workflow systems, are process-oriented 
and aim at structured workflows. In addition, it is 
widely recognized that workflow management systems 
should also provide flexibility. Much research on 
flexible and adaptive workflow management systems 
has been carried out by diverse approaches. We 
summarize below three approaches in workflow 
flexibility.

Process adaptation: Process adaptability focuses 
on the ability of the workflow processes to react to 
exceptional circumstances. Usually workflow changes 
can take place at both workflow schema and the 
workflow instance level, so workflow flexible 
management should support both cases. One of the 
well-established frameworks for adaptive process 
management is the ADEPT2 change framework151, 
which adequately deals with process changes during 
run time by supporting the following fundamental 
change requirements-support of structural adaptations at 
both the workflow schema and the workflow 
instance level, enabling a high level of abstraction 
when defining process changes; of change operations; 
and correctness of changes. CAKE2[6] and WASA2〔끼 

support structural flexibilities at run time at the 
workflow instance level. Both approaches support 
only primitive changing such as adding or removing, 
while ADEPT2 provides support for a wide range of 
high-level change operations.

Other approaches include a case handling and a 
rule-based approach"] While the traditional workflow 
management deals primarily with the work item and 
control flows, the case handling approach罔 focuses 
on the case itself, e.g., the evaluation of a job 
application or the decision on a traffic violation. The 
central concept fbr case handling is the case and not 
the activities or the routing. The case acts as a 
primary driver to determine which activities are 
enabled. On the other hand, AgentWorkP], based on 
the rule-based approach, specifies exceptions and 
necessary workflow flexibilities, using temporal 
estimates to determine which remaining parts of 
running workflows are affected by an exception, and 
is able to perform suitable predictive adaptations.

Built-in flexibility: This approach deals with 
workflow flexibility by leaving process fragments 
unspecified at build time and by specifying the 
missing parts during run time. This is more usefill in 
cases where the process can be structured with partial 
information by deferring uncertainty to run time. 
Worklets[41 is an approach for dynamic flexibility and 
evolution in workflows based on accepted ideas of 
how people actually work (called Activity Theory). In 
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Worklets, each task of a process instance may be 
linked to a repertoire of actions, one of which is 
contextually chosen at run time to carry out the task. 
Pockets of flexibility[이 allow ad hoc changes and/or 
b니ilding of workflows for highly flexible processes, 
providing the ability to execute based on a partially 
specified model, where the full specification of the 
model is made at run time. A constraint-based 
workflow modeK'마 combines the advantages of a 
declarative style of modeling and allows ad hoc and 
evolutionary changes, which makes it is possible 
both to avoid the need for unnecessary changes and 
restrictions using a more declarative style and to 
provide support changes at the schema and instance 
level.

Artificial Intelligence Planning: In the meantime, 
methods from the artificial intelligence planning 
community enable composition, adaptation, and 
synthesis of processes, thus providing the means to 
expand predefined process libraries to accommodate 
new situations and requirements. In addition, this 
community provides techniques for modifying 
activated processes in response to run-time failures 
and unexpected events. Two automated plan 
generation methods lend themselves most naturally 
to the synthesis of new processes from libraries of 
previously defined processes. Hierarchical task 
network (HTN) planning"" synthesizes plans using 
libraries of processes (referred to as task network) 
defined over multiple levels of abstraction. Planning 
consists of incrementally refining tasks at high levels 
of abstraction by applying more refined task networks, 
eventually bottoming out in a set of directly executable 
tasks. HTN planning is well-suited to workflow 
management, given the similarity between processes 
and task networks. Case-based planning["，i기 generates 
new plans for a given situation and task by retrieving 
solutions for similar problems from a previously 
defined case library, and then adapting them to meet 
the requirements of the current situation. As such, 
case-based planning methods provide a way to build 
an experience with previously defined processes, 
providing adaptation to suit new conditions and 
requirements.

2.3 Event Calculus
The event calculus is based on axioms concerning 

notions of events, properties, and the time points at 
which the properties hold. The following primitives 
present the essentials of the event calculus[14].

• holds w P x T
:holds(p, t) means that property peP is true at

time ZgT.
• happens 匚 E x T
:happens(e, t) means that event eeE occurs at 
time ZgT.

• initiates o E x p x T
:initiates(e, p, t) means that if event eeE occurs at 
time ?gT, it will initiate property peP.

• terminates o E x p x T
:terminates(e, p, t) means that if event eeE occurs 
at time ZgT, it will terminate property peP.

• clipped c T x p x T
:clipped(tb p,扳 means that property /?gP is 
terminated between times ^gT and

• initially c P
:initially(p) means that property holds from 
time OeT.

• < c T x T
:standard order relation for time ZgT.

Based on these primitives, the following axiom 
can be defined,

Axiom 1. (Basic Event Calculus)
• holds(p, t) <— initially(p) A clipped(0, p, t).
• holds(p, t) <— happens(e, t0) A initiates(e, p, t© A 
t()<t A ^clippedfto, p, t).

• clipped(t(), p, t) <r- happens(e\ t') A terminates 
(e‘, p, t') A t()< t' <t.

Axiom 1 means that a property p holds at the time 
t if p holds initially or for the period after an event e 
happens at time 而，and there exists no such an event 
e' which happens between t0 and t and terminates the 
property p.

3. Workflow Specification based on 
Event Calculus

The various workflow modeling techniques differ 
slightly in the extent to which they provide the 
ability to model different domain and system 
perspectives1^15 j. The control flow perspective describes 
activities and their execution ordering through 
different constructors, which permits execution-flow 
control. The data perspective deals with business and 
processing data, which is layered on top of the 
control perspective. The resource perspective provides 
an organizational structure anchor to the workflow in 
the form of human and device roles responsible for 
executing activities. The operational perspective 
describes element actions executed by activity, where 
the actions map into underlying applications. Ideally, 
what might be needed is the development of a single 
and holistic technique that could effectively represent 
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all modeling perspectives in a thorough and concise 
form and hence be applicable in all modeling 
situation.

Clearly, the control flow perspective provides an 
essential insight into a workflow specification's 
effectiveness. In this paper, we are interested in 
catching the control flow perspectives of workflow 
and propose a formal framework for specifying and 
executing workflows based on the event calculus. To 
the best author's knowledge, the framework for 
specifying and executing workflows based on the 
event calculus was first proposed by Cicekli and 
Yildirim[16]. They have demonstrated how the event 
calculus might be extended to describe the specification 
and execution of activities in a workflow. However, 
they only deal with the routing rules without 
activity's state transition and dynamic environment.

The event calculus is the formalism reasoning 
about time and change叫.It uses general rules to 
derive that a new property holds as the result of the 
event. With the narrative basis of the event 
calculus卩이 we can cope with the abnormal situation 
during workflow enactment as well as standard 
workflow representation. An important feature of the 
event calculus is that it can be extended, without too 
much difficulty, to deal with some problems that are 
extremely hard to represent using other formal 
languages.

The workflow specification can be described by 
the basic axiom (Worl^flow Event Calculus : WEC), 
the state transition (Wsta(e), and the routing control 
(luting)- The action in Wstate means any event that is 
considered relevant in a process involving routing of 
a workflow. The state in Wstate means the property 
that is effect from relevant action. The routings in 
Wmutins are the temporal relationship or associations 
among actions, and consist of happens clauses and 
ordering of time points. Workflow Event Calculus 
(WEC) can be defined as follows.

Axiom 2. (WEC)
• holds(state(activity), t)
<-mitially(state(activity)) /\ ~Iclipped(O,state(activity), 

机
• holds(state(activity), t)
<-happens(action(activity), initiates (action

(activity), state(activity), A t0 <t A ~blipped(t(), 
state(activity)} t).

• clippedfto, state(activity), t)。happens(action' 
(activity), t，，terminates (action '(activity), state 
(activity), tJ)A < ^ < t.

WEC means that a state(activity) holds at time t if 
a state(activity) holds initially or fbr the period after 

an action(activity) happens at time 而，and there exists 
no such an action "(activity) which between t0 and t 
and terminates the state(activity). Example 1 means 
that the activity is running at time t if it holds initially 
or fbr the period after run action at time 如 and there 
is no action which happens between t0 and t and 
terminates its running state.

Example 1.
• h시ds(running(activity), t) <— initially(rummg(cictiyity)) 
A「clipped(0, running(activity), t).

• holds(running(activity), t)—happens(run (activity), t@
initiates(run(activity), running(activity),切

A to <t A ~^clipped(t0, running(activity), t).
• clippedfto, runnmg(activity), t) ^happens(suspend
(activity), tr) /I (terminates(suspend(activity), 
nmning(activity), f) V termmates(abort(activity), 
running(activity), t，)) A t0 < < t.

3.1 State Transition (Wstate)
The individual activity instance of a workflow will 

change its state in response to the actions. The 
descriptions of the states are as follows.

• not initiated: if a workflow instance has been 
created, then all activities in the workflow are 
initially set to the not initiated states.

• initiated', an activity instance has been created, 
but the activity has not yet fulfilled the conditions 
to cause it to start execution.

• running-, an activity instance is processing.
• completed', an activity instance has fulfilled the 
conditions fbr completion.

• suspended', an activity instance is quiescent.
• aborted: the execution of an activity instance has 
been stopped before its normal completion.

Fig. 1 shows how the related actions (ie, trigger, 
start, restart, complete, suspend, abort) change the 
state of an activity, and which state transitions are 
permissible.
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In this paper initiates and terminates predicates 
are used to specify how the 어ate of an activity can 
change. In addition to defining which states they 
initiate or terminate, the required preconditions for 
activating these predicates can be specified using 
holds predicate. Therefore all state transitions can be 
specified in terms of a set of initiates, terminates, and 
holds clauses as follows.

• (S^ initiates(action(activity), state(activity), t)
holds(precondition(activity), t)

• (S2) terminates(action(activity), state(activity), t)
<-holds(precondition(activity), t).

(Si) or (S2) means that if a precondition (activity) 
holds at time t, then action(activity) occurs at the 
same time and will initiate state(activity) or 
terminates state(activity) respectively. The functional 
arguments in (S〕) and (S2) are represented as 
[actionjaame, statejiame, preconditionjiame]. We 
formalize all state transitions using (S】)and (S2) in 
axioms 3〜8.

Axiom 3. (notinitiated state : Ns}ate)
•V i, initially (not_initiated(activity^).
*(S2) [action, state, precondition]
=[(start, abort), not_imtiated, not initiated].
:All activities are in notjntiated states from initial 

time. If an activity is in a notjnitiated state and one 
of following actions trigger or abort occurs at time t, 
then the action terminates notjnitiated(activity).

Axiom 4. (initiated state : Istale)
•(Si) [action, state, precondition]
=([start, initiated, notjnitiated], [rework, 

initiated, (running, completed, suspend)]}.
• (S' [action, state, precondition]
=[(run, abort), initiated, initiated].
:If an activity is in a not initated state and an 

action trigger occurs at time t, then the action 
initiates initiated(activity). If an activity is in one of 
following states, running or suspended state and an 
action restart occurs at time Z, then the action 
initiates mitiated(activity). If an activity is in an 
initiated state and one of following actions start or 
abort occurs at time t, then the action terminates 
initiated(activity).

Axiom 5. (running state : Rstate)
• (S；) [action, state, precondition] = {[run, running, 

initiated], [resume, running, suspended]}.
• (S2) [action, state, precondition] = [(suspend, 

complete, abort, rework), running, running].
:If an activity is in an initiated or a suspended 

state and respectively an action start or resume 
occurs at time then the action initiates running 
(activity). If an activity is in a running state and one 
of actions following suspend, complete, abort, or 
restart occurs at time Z, then the action terminates 
running(activity).

Axiom 6. (suspended state : Sstal()
• (Sj) [action, state, precondition] = [suspend, 

suspended, running].
• (S2) [action, state, precondition] = [(abort, resume, 

rework), suspended, suspended].
:If an activity is in a running state and an action 

suspend occurs at time t, then the action initiates 
suspended(activity). If an activity is in a suspended 
state and one of following actions abort, resume, or 
restart occurs at time t, then the action terminates 
suspended (activity).

Axiom 7. (completed state : Cstate)
• (SJ [action, state, precondition]
=[complete, completed, running].
• (S2) [action, state, precondition]
=[rework, completed, completed].
:If an activity is in a running state and an action 

complete occurs at time t, then the action initiates 
completed(activity). Notice that there is no action 
terminating completed(activity).

Axiom 8. (aborted state : Astate)
• (Si) [action, state, precondition] = [abort, aborted, 

(notjnitiated, initiated, running, suspended)].
:If an activity is in one of following states, 

notjnitiated, initiated, running, or suspended and an 
action abort occurs at time then the action initiates 
aborted(activity). Notice that there is no action 
terminating aborted(activity).

3.2 Workflow Routing Controls (Wrouting)
Sequences and dependences among activities can 

be specified in several ways: two activities can be 
directly connected, with the meaning that, as soon as 
the predecessor is completed, the successor is ready 
for execution. In all other cases, connections among 
activities are performed by special-purpose routing 
rules: splits and joins. Compositions of splits and 
joins may be used to represent iterations or other 
complex routing structures"위.

A split is preceded by one activity, ie, predecessor, 
and followed by many activities, i.e., successors. 
Splits are classified as And-Split and Or-Split.

• And-Split: after the predecessor is completed, all 
successors are to run.

• Or-Split'. each successor is associated with a 
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branch condition, and after the predecessor is 
completed, conditions are evaluated and only 
successors with a true condition are to run.

A“ Join is preceded by many activities, i.e., 
predecessors, and followed by one activity, i.e., 
successor. Joins are classified as And-Join and Or- 
Join.

• And-Join-. o끼y after all predecessors are 
completed, a successor is to run.

• Or-Join: the successor is to run every time 
whenever a predecessor is completed.

Axiom 9. (Serial)
• initiates(trigger(Y), initiated(Y), t) holds(path(X, 

Y)f t) holds(completed(X), t).
:There is a path between a predecessor X and a 
successor K and Y is initiated as soon as X is 
completed (Fig. 2-a).

Axiom 10. (And-Split)
• initiatesftriggerfY,<), initiated(Yit) <r- hol(h(path 

(XfYi),t) holds(completed(X), t).
• initiates(trigger(Y2), initiated^, t) s holdsfpath 
(X,爲,t) holds(completed(X), t).

• initiatesftriggerfY^), initiated^, t)) holds(path
(X, ¥„), t) holds(completed(X)f t).
:There are paths between a predecessor X and 

successors Yh Y2> …，匕 and all Yh Y2,…，Yn are 
initiated after X is completed (Fig. 2-b).

Axiom 11. (Or-Split)
• initiates(trigger(Yi), initiated(Y]), t) J holds(path(X, 

Y]), t) A holds(eondition(XYi),t) A holdsfcompleted 
(冷,机

• initiatesfirigger (Y^, initiated(Y^f t) <— holds(path(X,
A holdsfconditionC^Y^, t) / holds(completed

(XE

• initiates(trigger (Y^), mitiatedfY,), t) <- holds(path(X, 
Y^, t) A holds^onditionfXYf), t) / holds(completed 
(XE
:There are paths between a predecessor X and 

successors Yh Y2, Ym and after the predecessor X 
is completed, conditionfXYi) are evaluated and only 
successors with a true condition are initiated (Fig. 2- 
c).

Axiom 12. (And-Join)
• initiates(trigger(Y), initiated(Y), max(tb 松,…，

<-holds(path(Xb Y), rj /I holds(path(X2, Y)t 匂)

/I,…，holds(path(Xn> Y), Q /\ holds 
(completed(Xi),")八 holds(completed(X^,切入
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…，/\ holds(completed(X^,
:There are paths between predecessors Xb X2,…， 

Xn and successors K and 쟈！!]y after all predecessors 
Xb X2,…，Xn are completed, a successor Yis initiated 
(Fig. 2-d).

Axiom 13. (Or-Join)
• initiates(trigger(Y), initiated(Y), t)

<—holds(path(X}, Y)r t) A holds(path(X2, Y), t)
,/I holdsfpathfX^ Y), t) A (holds(completed 
(X})t t) V holds(completed(X2), t) V,…，V7 
holds(completed(XJ, t)).
:There are paths between predecessors Xb X2,…， 

X and successor Y, and the successor Y is initiated 
every time whenever any predecessor (i = 1, 2,…， 
n) is completed. Generally Or-Join definition is not 
easy in workflow context, and many applications use 
the Or-Join term as exclusive join (XOR-Join) 
instead. In this paper, Or-Join is considered as 
iterative join in that the activities arriving later at 
joining point cannot be started immediately but in the 
initiated states until the earlier (in running) will be 
completed, suspended, or aborted (Fig. 2-e).

Axiom 14. (Loop)
• initiates(triggerfY}), initiated(Yj), t)
<—holds(path(Xm Y/), t) A holds(loopcondition 
(XnYi), t) A holds(completed(X^, t).

• initiates(trigger(Xi), initiated(X]), t)
<-holdsfpathfY^ XJ, t) Aholds^ompletedfY^, t).
:Like Or-Split, a branch activity X in a loop can 

be associated with a loop condition, which is 
evaluated whenever the activity is completed. A 
merge activity 出 in a loop can be considered as a 
successor in Or-Join. In a loop, the merge activity is 
in a completed state, because the merge activity has 
already been done (Fig. 2-f).

Now we look at how the routing axioms (电妬嚟) 

can be used to specify the workflow process by an 
example. Considering the workflow in Fig. 3, there 
are 12 activities indexed by from A to L> and flow 
and the routing controls such as the And-Split^ Or-

(d) And-Join (e) Or-Jom (i) Loop

I度흠, 2. Workflow routings.
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Fig. 3. Workflow example.

/^Serial*/
initiates(start(A), initiated(A), tO) 
^—holds(path(begin,A),tO) A holds(completed(begin), tO). 
initiates(start(B). initiated(B), tl)
^holds(path(A,B), tl) A holds(completed(A),tl).
initiates(start(G), initiated^G), t6)
<—holds(path(F, G), t6) A holds(completed(F),t6). 
mitiates(start(end), mitiated(end),tl 1)
«—holds(path(K,end),tU)八 holds(completed(K),Hi).
/*And-Split  히
initiates(start(C), initiated(C),t2)
<—holds(path(B, C), t2)八 holds(completed(B),t2).
initiates(start(D), initiated(D), tl)
<^holds(path(B,D), t2) A holds(completed(B), t2).
mitiates(start(E), initiated(E), t2)
—holds(path(B,E),t2) / holds(completed(B),t2)._______
/*And-Join*/
initiates(start(F), initiated(F), max(t3, t4, t5)) 
*—holds(path(C,F),t3) A holds(path(D,F), t4) 
A holds(path(E, F),t5)八 holds(completed(C), t3) 
八 kolds(completed(D) ,t4) /I h이ds(compieted(E)j5) 
/*Or-SpHt  히
initiates(start(H),initiated(H),t7) 시ds(path(G,H),t7)
八 holds(condition(GH)tt7) A holds(completed(G),t7).
initiates(start(I), initiated(I), t7) —h 시ds(path(G,I),i7) 
/I holds(condition(GI),t7) A holds(completed(G), t7). 
/*Or-Join*/
initiates(start(J), initiated(J), t8)
—lwlds(path(H,J)J8) A holds(path(I,J), t8)
八(holds(completed(H),t8) holds(completed(I)j8)).
/*Loop*/
initiates(start(K), initiated(K), t9) <—holds(path(J,K), t9) 
A holds(condition(JK),t9) A holds(completed(J)j9). 
initiates(start(L),initiated(L),t9) ^~holds(path(J,L),t9) 
A holds(condition(JL),t9) holds (completedJ), t9).
initiates(start(G),mitiated(G),t^O)
Sds(path(L,G)!0) 八 h시ds(completed(L)0).

Fig. 4. Workflow specification example.

Spit, And-Join, and Or-Join to model serial, 
conditional, parallel and loop routing. While parallel 
routing normally commences with And-Split and 
concludes with And-Join, conditional and loop 
routing commence with Or-Split and with Or-Join. 
Fig. 4 shows the workflow specification for the Fig. 3.

4. Workflow Change Patterns

To design workflows in changing and dynamic 
environments, a flexible, correct, and rapid realization 
of models of the activity flow is required. We are 
concerned with dynamic structural change. 'StructuraF 

means that we are concerned with changes to the 
structure of workflows; we are not concerned in this 
paper such as changes to the value of an application 
data variable. 'Dynamic, means that we are required 
to make the change 4on the fly' in the midst of 
continuous execution of the changing procedure. Not 
only the correctness and consistency before and after 
dynamic change, but also the state of an activity in a 
workflow is the major criteria fbr deciding whether a 
specific structural change can be applied to it or not. 
As an example, the new addition of an activity 
between the two successive activities should not be 
permitted if the successor was already completed.

In particular, techniques are needed to design 
workflows capable of adapting themselves effectively 
when dynamic situation occurs during process 
execution. In this section, we present an approach to 
flexible workflow design based on patterns applying 
WEC, Ws!ate, and Wroutins of the previous section. Now 
we define patterns that can frequently occ나t in 
workflow modeling.

When a new activity is inserted into an existing 
workflow, new paths must be added (by initiating the 
new path) and old paths must be removed (by 
terminating the old path) while maintaining the 
correctness and consistency of the workflow.

Let be a finite set of patterns 17=化，PA P()S, 
Pop}. A pattern P, e 77is defined as 2-tuple, Pj = 
<Name, Template>, where, the name of a pattern 
should be meaningful to indicate its purpose and be 
unique to identify the pattern, and the template of a 
pattern is defined as a non empty set of event 
calculus.

4.1. Add Pattern: Pa
Description: A change is of type Pa if a new 

activity is introduced between the exiting activities in 
serial, parallel, or conditional routings.

Pa = <Add, Ta> (see Fig. 5)
/*  Initial condition */
holds(path(X, Y), t) /\ (holds(notJntiated(Y), t) V 
holds(initiated(Y), t)).
/*  Change template : Ta */
step 1 : initiates(add(X, New), path(X, New), t). 
step 2 : imtiates(add(New, Y), path(New, Y), t). 
step 3 : terminates(delete(X, Y), path(X, Y), t).

State constraints: The add pattern can be applied 
to following situations: serial, parallel (And-Split and 
And-Join) or conditional (Or-Split and Or-Joiri). 
Furthermore, the applicability of the add pattern 
depends on the state of the activities in a workflow. 
To avoid the addition of a new activity as a not- 
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accepted state such as running or completed, we 
require that all successors of activity New must be in 
one of the states notj,nitiated or initiated. The 
predecessor of activity New may be in an arbitrary 
state.

Fig. 5. Add procedure.

initial

一

hoWpathfX. Y), t) a (holch(notJnitiats<i(Y). t) 
v holdstmitiated^Y),()) b成湖游@泌成 New, pathfX,N^). t)

c幺-* 스 
iniiiatesfadc/^ew, Y), puih(New, Yj, t)

step3 /SX
為3

tgrminates(dele!e(X, Y), path(X, Y),()

4.2. D이ete Pattern: Pd
Description: A change is of type 已 if an activity is 

removed between the exiting activities in serial, 
parallel, or conditional routings.

Pd h <Delete, TJ> (see Fig. 6)
/*  Initial condition */
holds(path(X, Y), t) A holds(path(Y, Z), t) A 
(holds(not_intiated(Y), t) Vholds(initiated(Y), t)).
/*  Change template : Td */
step 1 : initiates(add(X, Z), path(X, Z), t).
step 2 : terminates(delete(X, Y)f path(X, Y), t).
step 3 : terminates(delete(Y, Z), path(Y} Z), t).

State constraints: The delete pattern can be also 
applied to following situations: serial, parallel (And- 
Split and And-Join) or conditional (Or-Split and Or- 
Join) routings. Furthermore, the applicability of the 
delete pattern also depends on the state of the 
activities in a workflow. The deletions of an activity 
Y is possible, if the activity which is going to be 
deleted is either in the state notj,nitiated 야r initiated.

Fig. 6. Delete procedure.

订Hti 하

◎AY흐kND
holds(path(X, Y), t) a holdsfpath^Z). t) a 
(holdsfnotjnitiatedfl), I) vholds(iuilicaed(¥)r t))

step I ------------■、、、
《区S二Y호a소2〉

imUales(afH(X,Z)t path(X,Z), t)

5^2 尸 f、
CE>-kX>

teriHintites(delete(X, i), paih(X.T)-1)

step 3 _______

u호厂흐)

!erminates(de!eie(}', Z), pathf'Y.Z), I)

4.3. Replace Pattern: Pr
Description: A change is of type replace 

(composition of add and delete) if an activity is 
replaced by another activity in serial, parallel, or 
conditional routings. The replace pattern always can 

be composed of Pa and Pd pattern.

Pr = <Replace, T^>
Tr Ta A Td

4.4. Reorder Pattern: Po = PosAPop
Description: A change is of type Po if activities are 

reordered without addition or removal. Reorder 
pattern is comprised of the followings: serializing 
activities that were previou이y allowed to run in 
parallel (Pos) and parallelizing activities that were 
pwviou이y allowed to run in serial (P여). N여ice that 
conditionalizing activities th건 previou이y were 
constrained to execute in parallel and vice versa are 
not involved in the structural change.

Pos = <Reorders, (see Fig. 7)
/*  Initial condition 찌
holds(path(X, Y), t) Aholds(path(X, Z), t) A 
holds(path(Y, W), t) A holds(path(Z, W), t) 
A ~holds(completed(Z), t).
/*  Change template : T脇 */

step 1: initiates(add(Y, Z), path(Y, Z), t).
step 2 : terminates(delete(X, Z), path(X, Z), t).
step 3 : terminates(delete(Y, Z), path(Y, W), t).

State constraint: In Fig. 7, a workflow, which 
originally does activity Y and Z at the same time, 
makes a dynamic change to its procedure by 
performing activity Z after activity Y. Although 하he 
procedure looks safe after the change, there are 
problems that could potentially surface during the 
change[M,19]. For example, after activity X is 
completed, the successors Y and Z start to run in 
parallel, and there may happen that the activity Y is 
still running and the activity Z is already completed 
after some while. If the dynamic change Pos on the 
fly occurs at this time, the activity W will be started 
to run without completing the activity Y due to the 
routing rules, and this is 줬n undesired result. This 
undesirable bug can be avoided by simply writing 
holds (completed(Z), t).

Fig. 7. Reorder prtKedure (Serializing).

/OX、
호

lu>lds(path(X, Y), t) a holds(path(X,2), t) 
holdsfpathf Y. W), I) -5 holds(path(2,  W), i) 
人-^holds(compIeted(Z). i).

岫Ur
imliates(add(¥,Z), paik(l',Z), t)

terminatns(dtilete(X,Z), path(X.Z), t)

포

termina!es(dele!e(Y, W), path(Y, W), t)
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P叩-=<Reorderp Tl)p> (see Fig. 8)
/*  Initial condition */
holds(path(X, Y), t) holds(path(Y, Z) holds(path(Z, 
n t). '
/*  Change template : Top 率/
step 1 : initiates(add(X, Z), path(X Z丿，t).
step 2 : imtiates(add(Y, W), path(Y, W), t).
step 3 : terminates (delete^ Z), path(Yf W), t).

State constraints: In Fig. 8, a workflow, which 
originally executes activity Y and Z in sequential 
order, makes a dynamic change to its procedure by 
performing activity Y and Z in parallel, i.e., there is 
no ordering relationship between the activities Y and 
Z. In this change, there is no problem and it is always 
possible to transfer.

Fig. 8. Reorder procedure (Parallelizing).

5. Workflow Execution and Planning

The workflow management system is composed of 
two main components: the process definition and 
workflow enactment service. The process definition 
is used in build-time to generate a computerized and 
executable definition of a workflow. In commercial 
workflow management systems, it provides graphical 
modeling tools and helps the designer to design, test, 
and validate workflow process. In this paper, the 
process definition is characterized by the workflow 
specification applying event calculus proposed in 
section 3. The workflow enactment service is 
composed of' a set of software modules for creating 
and controlling instances of processes during run­
time, and provides the run-time environment in 
which workflow management systems also manage 
the execution and s©q니巴King of the various activities 
of the workflow.

5.1. Abductive Planning
We describe how to execute the workflow 

dynamically based on the workflow specification (in 
section 3) and workflow change patterns (in section 
4) using abductive planning technique. For the 
dynamic workflow execution, we apply the abductive 
planning to the event calculus, and abductive 

planning will produce the ordering of actions which 
comprise the workflow. We firstly give a brief 
introduction to the abductive inference rule. At first 
the rule of inference called resolution which is based 
on modus ponens augmented with unification is as 
follows: 'from p v— q and q, we can infer p\ While 
our workflow execution is based on the abduction 
inference rule: ""from p J q andp, we can infer q'

That is, given a rule p — q and a feet p, abduction 
g엱derates an explanation for p by stating the fact q. 
This is not a sound inference rule, however, because 
q does not logically follow from p J q and p. 
Therefore, q must be seen a hypothetical explanation. 
If the implication p ・ q corresponds to the notion of 
causality, then abduction will generate plausible 
explanations.

Now let's explore how this abductive inference 
rule can be applied to the dynamic workflow 
execution. A plan consists of the set of facts defined 
by the 하redicates happens and temporal ordering 
fonnulae (<). This set can represent a plan because it 
defines the actions that happen and the time ordering 
between actions.

Definition 1, A plan P is a s이ution for a goal G 
with respect to the theory T and history H such as T 
A H A P infer G where, T 盪 WEC A 风皿 八 

仇廁华人n

This definition means that any planning problem P 
consists of finding one or more valid and possible 
paths can be generated irom the workflow specification 
theory T and the current history H to a given goal G. 
History H is initially empty and will be updated as H 
A P every time plan P is generated by a dynamic 
goal state. Jf a desired goal G is related to the 
modifications of the existing workflow, then the 
structure of a workflow c쵸哉 be changed by a set of 
primitive provided patterns.

We present examples to show how the dynamic 
workflow paths and related activity states are 
generated and stored through the abductive planning. 
Let's see the workflow example in Fig. 3 again. 
Initially all activities are in the not initiated states 
and imtiated(begin) sets to tnie. If our desired goal 
state is holds(completed(B), 〃，then one possible plan 
P (there can be so many solutions in이ading repetition 
of happens (suspend^, q) and happens (resume(X), 
切 is the conj印ictBn of the following happens and 
tempor이 ordering formulae (<).

P = [happens(trigger(A),tl), happens(start(A),t2), 
happens(complete(A),t3), happens(trigger(B), t3), happens 
(start(B),t4), happens(complete(B),t5), tl<t2, t2<t3, 
t3<t4, t.4<t5].
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Fig. 9 is the abductive proof tree of the above 
example, representing the top down search space of 
possible paths using dynamic workflow specification 
rules. This search space will be terminated until they 
found the initial condition or adequate history H.

Now lefs assume that we are at time tnow(= t5 + 
some time), i.e., both activities A and B were 
completed, and we are now performing the parallel 
activities C and D, and we have completed E, i.e., 
holds(running(C), tnow), holds(running(D), tnow), and 
holds(completed(E), tnow). To make a dynamic 
change by performing activity E after D serially 
instead of parallel processing will fail because 
change pattern Pos will preserve reasonable change 
(Fig. 10). Without losing control, one can evaluate 
the dynamic situation at workflow running time and 
cope with any dynamic change.

Fig. 10. Example of dynamic change.

Given H which is updated as P holds(running 
(C),編丿 /I holds(running(D), L為 /I holds(completed 
(E), tnow) (Fig. 11), we assume next goal state G = 
holds(completed(G), t), then the valid plan P' will be 
generated (Fig. 12) as follows.

P = [happens(complete(C), tl), happens(complete(D), 
t2), happens(trigger(F)f t3=max(tl,t2)), happens(start 

(F), t4), happens(complete(F), t5), happens(trigger(G)f 
t5), happens (start(G), t6), happens (complete(G), 17), 
t3<t4, t4<t5, t5<t6, t6<t7].

completed

Fig. 11. Example of history.

Fig. 12. Example of planning result.

If our desired goal state G is like holds 
(completed(K), t), which is for the last activity in the 
workflow, abductive plan P is considered as workflow 
scheduling to generate event notices for all activities 
that can be performed.

5.2. Correctness and Soundness
Event calculus is an express representation language 

for planning problem. Consider the following example, 
taken from[20].

initially(r).
initiates(ei, p, t).
initiates(e2, q, t).
terminates(eh r, t) <r- holds(q, t).
terminates(e2, l t) 스- holds(p, t).

:the terminates rules define the context dependent 
effect, i.e., e} terminates r if q holds, and e2 
terminates r if p holds. Given the goal G = [holds(p, 
t) A holds(q, t) A holds(r, t)J, the abductive planning 
would find the following solution considered incorrect.

P = [happens(e}, ti), happens(e2, ", h < t, t2 < t].

This example shows that correctness problems 
occur in the case of context dependent terminating 
events, and all non-linear planners that allow for 
such effects are incomplete and generally incorrect. 
However, we can exclude such events because there 
is no action in our workflow model that interferes 
with each other in a context dependent way.

An abductive planning must meet certain constraints 
to ensure the correct execution of the workflow at 
run-time.
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First, an arbitrary goal state holds(completed 
(activity), t) should be true in a workflow instance by 
the appropriate plan. Consider the following example,

• initiates (trigger (B), initiated(B), t)
<一 holds(path(A, B), t) A holds(condition(AB), t) 

八 holds(completed(A), t).
• initiates(trigger(C), initiated(C), t)

holds(path(A, C), t) A holds(conditionfAC), t) 
/I holds(completed(A), t).

• initiates(trigger(D), initiated(D), t)
《一 holds(path(B, D), t) A holds(path(C, D), t) A 
holds(completed(B), t) A holds(completed(C), t).

Given the goal G = holds(completed(D), t), the 
abductive planning would find the failing intermediate 
s이나tion. As 아lown in Fig. 13, in order that holds 
(completed(D), t) should be true, both holds(completed 
(B), t) and holds(completed(C), t) are to be true, 
However, this could never happen, when path(A, B) 
and path(A, C) are alternative, so only one of 
condition(AB) and condition (A C) should hold at the 
time activity A is completed.

Second, the workflow will be finished eventually 
and at that moment there should not be any activity 
that is running. Consider the following example,

• initiates (trigger (B), initiated(B), t)
holds(path(A, B), t) A holds(completed(A), t).

• initiates(trigger(B), initiated(B), t)
holds(path(C, B), t) A holds(completed(C), t).

• initiates (trigger (C), imtiated(C), t)
holds(path(A, C), t) A holds(completed(A), t).

• initiates(trigger(D), initiated(D), t)
<—holds(path(C, D), t) A holds(completed(C), t).

Given the goal G = holds(completed(D), t), the 
abductive planning would find the valid solution. But 
after the workflow is correctly completed, there still 
exists any live activity in the completed workflow. 
As shown in Fig. 14, after activity C is completed, 
the action happens (trigger (B), t) and happens (trigger 
(D), t) will be fired concurrently, and then the 
activity D will be running and then completed 
normally. However activity B and C in the loop are 
can be still in running states.

These two results are not desired, and we can 
avoid these problems by the following methods. 
Cleary the parallel flows started by an And-Split 
should not be joined by an Or-Join. The conditional 
flows created via an Or-Split should not be joined by 
an And-Join. In Summary, an And-Split should be 
completed by an And-Join and an Or-Split should be 
complemented by an Or-Join. Furthermore, the loop 

is controlled by Or-Split and Or-Join instead of And- 
Join and And-splitto preserve the finite iteration.

holds(completed(D), t)
/E、、、、

And-Join '、、

holds(completed(B), t) holds(completed(C), t)
▼'、、、、 .

happens(mitiated(B), 〃''、、段-‘吧.^happens(initiated(C), t)

holds(completed(A), t)

Fig. 13. Soundness Problem (1)

holds(completed(D), t)

holds(completed(C), t)-、、、

f Sop

holds (completed(B), t)，
A

holds(completed(A), t)

Fig. 14. Soundness Problem (2).

6. Implementation

The proposed approach can be implemented in 
several different ways. One approach is to write the 
axioms directly in Prolog. However, this will cause 
an infinite loop, because the definition of holds 
predicate includes calls to initiates or terminates 
predicate that in turn includes calls to holds. One 
such abductive event calculus planner avoiding this 
problem is due to[2I]. The following's behavior is 
equivalent to that of the vanilla meta-interpreter with 
the object-level clause for 為.■- k2> 為

demo([X() I GJ) :- axiom(Ah GJ, append(G2, /%, 
…，儿？ I GJ, G3), demo(G3)

This is an abductive meta-interpreter for abduction 
with negation-as-feilure, with built-in features for 
handling event calculus queries; we modify this 
event calculus planner here to demonstrate how 
possible paths can be generated and stored. As the 
number of activities in workflow increases, the 
search space in this program also expands. We can 
reduce this problem space by introducing the facts of 
history H.

The workflow manager actually runs the workflow 
specification. In normal situations, the manager starts 
a workflow process by an initial plan for an initial 
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goal. Once the abnormal situation happens, the 
workflow manager queries the new goal to cope with 
this exceptional situation, and reschedule the 
workflow process. The proposed approach can be 
also used as a quick tool in prototyping applications 
or simulations, thus providing opportunities to 
analyze the efficiency of the workflows.

The ideas discussed in this paper have been 
implemented with SWI-Prolog. The example workflow 
as shown in Fig. 15 can be expressed in Prolog 
syntax and the workflow planning solution R will be 
obtained by the query template, e.g. abdemo([holds 
(state(activity),t), ... holds(state(activity),t)],R), where, 
R is solution which consists of actions and temporal 
orders. For example, after execution of queries such 
as 'abdemoOJioldsfcompleted^, t)], R)^ and '사)demo 
([holds(path(f, r)), t), holds(path(r, g)), t), holds(neg 
(path(f fg)), t)], R)\ which can be interpreted as 
applying state transition and change pattern respectively, 
solution R will be displayed like Fig. 16. First solution 
depicts the state transition results of activities C, D, 
and F, and second solution shows the path change. 
The Prolog file for abductive planner about this 
example is partially shown in Appendix.

Fig. 15. Example workflow.

In this paper, we have presented an approach to the 
dynamic workflow specification and execution applying 
event calculus extensions. The approach is based on 
modeling the general flow of activities and the 
dynamic behavior separately. Major contribution of 
the approach is related to the design of workflows in 
changing and dynamic environment, while preserving 

flexible and correct models of the activity flow. The 
general primitive axioms and change patterns for 
dynamic specification and execution mechanisms in 
workflow management systems can provide a good 
degree of flexibility and can be used in many 
applications.

In this paper we have also shown that the activity 
state transition and major types of routings (i.e., 
Serial, And-Split, Or-Split, And-Join, Or-Join, Loop) 
can be expressed and how the dynamic workflow 
paths and related activity states are generated and 
stored through the abductive planning.

This paper focuses on flexible specifications and 
evolutionary changes concerning the flow structure,
i.e.,  definition of the sequence in which activities 
should be executed within a workflow. Future work 
in this area includes the extensions of the analysis to 
modification of other workflow characteristics such 
as data control, information handling, or organizational 
operations, which can be done by considering such 
predicates as: activity(agent, input, output), role(agent, 
activity).

Appendix

<Basic structure of abductive planner in Prolog 
syntax그

// WEC //
• demo([holds(S, T2)\G1]) :- axiom(initiates(A> S, 
T1),G2), axiom(happens(A, Tl), G3), axiom(befbre 
(T1,T2), []), demo([not(clipped(Tl,S, T2))]), append 
(G3,G2,G4), append(G4,Gl,G5), demo(Gs5).
// Workflow State Transition Rule //

• Axiom (initiates (action(Activity), state(Activity),
T), [holds(condition(Activity), T)J).

• Axiom(termiriates(action(Activity), state(Activity), T), 
[holds(condition(Activity), T)]).
// Workflow Routing Rule //

• Axiomfinitiates(start(Activity), initiated(Activity), 
T)), [holds(path(_,J,T),...,holds(path(_,J>'I), cond 
(J}.. .,cond(J, holds(completed(Activity), 7),..holds 
(completed(Actiyity), T)]).
// Workflow Changing Rule fbr Add //
• Change(X,New, Y,pa) abdemo(holds(path(X,New), 
t), holds(path(New, Y),t), holds(n%(path(X,Y)),t)],R).
// Workflow Changing Rule fbr Delete //

• Change(X,Old,Y,pd) :- abdemo(holds(path(X, Y),t), 
holds(neg(path(X, Old),t)), holds(neg(path(Old, Y)),t)], 
R)-
// Workflow Changing Rule for Replace //

• Change(X,Old, New,Y,pr) :- Change(X,New, Xpa), 
ChangefX.Old, Y,pd)
// Workflow Changing Rule fbr Reorder //
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• Change(X, Y,Z, W,pos) :- abdemo(holds(path(Y,Z),t), 
holds(neg(path(X,Z)), t), holds(neg(path(^W)), t)],R).
// Workflow Initial Condition and History //

, axiom (initially(state(Activity)),[]).
• axiom^mtiallyfpathfActivity,Activity))  ̂]).
• axiom(cond(Activity, Activity)),[]).
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