B2 CAD/CAM SIS =2
MisH N1z 200049 29 pp. 11-23

HEjuetBes X|25H7| $8F Event Calculus
7/die| 213 E=2F nUlE

05 F*, Mg H*

Workflow Meodeling for Product Development Environments
based on Event Calculus

Heejung Lee* and Hyo-Won Suh**

ABSTRACT

A llexible and correct model of the activity flows is required for workflows in product development
environments. In particular, the design activity flows are not known until run-time, and conventional
approaches have limit to handle this situation because they cannot predefine all the potentially reach-
able paths. Thus, the stucture of the workllow model must be flexible enough o describe variety in
workflow design and accommodate dynamic changes during workllow execution. In this paper. we pro-
vide the general primitive axioms und change patterns based on cvent calculus for dynamic workflow
specification and exccution mechanisms in product development cnvironments. Also, we describe how
to execute the workflow dynamically based on the workflow specification and workflow change pat-

terns using abductive planning technique,

Key words : workflow modeling, dynamic change, event calculus

1. Introduction

Workflow management systems (WIMS) are
currently the leading technology to cope with the
today’s challenging cnvironment, A workllow as the
automation of a process involves a set ol partially
ordered activities to be undertaken by a set of
procedural rules!"?, Typically workflow design aims
al representing different [low of activities, capturing
all possible situations with normal activity [lows,
withoul adjustment to a new situation.

Business activities and environments, as well as
many cngineering branches in general, are highly
dynamic and subject to change. As the business
climate is increasingly dynamic and competitive
worldwide, redesign and optimization of existing
business processes become essential in most
organizations (o gain better efficiency and effeclivencss

*Ha)gl, Pt AbR Al 8l ok
#2239, By AR5 Eka
- =R 2000, 09, 28
- =AY 2009, 1118
- HAREE R 2009, 12. 0]

in the rapidly changing environments. Between
radical redesigns, business processes often have (o be
adjusied over and over again. [n addition to that,
software systems are confronted with evolution
requirements caused by technical advances. Technical
advances often lead 1o systems reconfiguration, such
as, replacement, updating of software components,
addition of new components, and change in component
interface. However, today's workflow systems are
often built in the same way as traditional approach
systems. Thal is, they are targeted at definite
scenarios and not designed to cope with a rapidly and
dramatically changing cnvironment. To cope with
this problem, the flexible workflow management
issues have been a hot research topic.

Thus, our research objective is to develop a
framework for managing workflows in a formal and
orderty manner while allowing flexibility. Consequently,
this paper includes following topics:

o workflow specification based on event calculus

e workflow modification rules

» work flow execution based on abduciive planning
and validation.

12 ol3lF, MEY

The remainder of this paper is organized as
follows: Section 2 summarizes the related work and
technical background. Section 3 suggests the formal
workflow modeling method based on the logic
programming, i.e., event calculus. Scction 4 provides
the workflow modification rules. Section 5 proposes
work[low execulion mechanism applying abductive
planning technique, and also introduces the correcmess
and soundness problems, which are likelv to be
arisen in the logic programming. Section 6 contains
the implementation of the proposed approach, and
finally concluding remarks are described in section 7.

2. Related Work and Background

2.1 Product Development Environments

A product devclopment process (PDP) is a set of
activities beginning with the perception of a market
opportunity and ending in the production, sale, and
delivery of a product. In the PDP many decisions
have to be made under uncertainty because of the
insuflicient accuracy level of data and the iterative
feature. [n addition, thc PDP is for the most part
human-based creative work that depends greatly on
the specific knowledge of the people participating in
the process”. The predictability and repeatability
that can be found in the manufacturing process are
not presented in the same degree in the PDPY. PDP
projects are implemented as a means of achieving an
organization’s strategic plan and differ trom each
other in operation because each project is unique.
Unique means that the product or service is different
in some distinguishing way from all other products
or services. Therefore, when we implement a PDP, a
new process needs to be designed for each casel.
We call this a onc-of-a-kind process, and every case
has its own process.

While the PDP is one of the most important
business processes for the sustainable success of
enterprise, the characteristics of the PDP make it a
challenge to manage it in an cffective and autonomous
way. Workflow management systems (WfMS) have
been suggested as a potential solution to deal with
this, but only a few of them have focused on the
PDP, focusing rather on general business processes,
which are relatively simple, repetitive, and uncoupled.
For these reasons, flexible workflow management
issucs, such as providing the ability of the workflow
processes to react to changes in the environment in a
consistent way, have been a hot research topic for the
last few years.

2.2 Workflow Flexibility
Traditional woridlow management systems, including

FFCAD, /CAMEE =&3F A 157 A 13 20109 2¢

production workflow systems, are process-oriented
and aim at structured workflows. In addition, itis
widely recognized that workflow management systems
should also provide flexibility. Much research on
flexible and adaptive workflow management systems
has been carried out by diverse approaches, We
summarize below three approaches in workflow
flexibility.

Process adaptation: Process adaptability focuses
on the ability of the workflow processes to react to
exceptional circumstances. Usually workflow changes
can take place at both workflow schema and the
workflow instance level, so workflow flexible
management should support both cases. One of the
well-cstablished frameworks for adaptive process
management is the ADEPT2 change framework”,
which adequately dcals with process changes during
run time by supporting the following fundamental
change requirements-support of structural adaptations at
both the workflow schema and the workflow
instance level, enabling a high level of abstraction
when defining process changes; of change operations;
and correctness of changes. CAKE2'*! and WASA2()
support structural flexibilities at run time at the
workflow instance level. Both approaches support
only primitive changing such as adding or removing,
while ADLPT?2 provides support for a wide range of
high-level change operations.

Other approaches include a case handling and a
rule-based approach™®. While the traditional workflow
management deals primarily with the work item and
control flows, the case handling approach®® focuses
on the case itself, e.g., the evaluation of a job
application or the decision on a traffic violation. The
central concept for case handling is the case and not
the activities or the routing. The case acts as a
primary driver 0 determinc which activities are
cnabled. On the other hand, AgentWork!, based on
the rule-based approach, specifies exceptions and
necessary workflow flexibilities, using temporal
estimates to determine which remaining parts of
running worktlows are affected by an exception, and
is able to perform suitabie predictive adaptations.

Built-in flexibility: This approach deals with
workflow flexibility by leaving process fragments
unspecified at build time and by specifying the
missing parts during run time, This is more useful in
cases where the process can be structured with partial
information by deferring uncertainty to rmn time.
Worklets™ is an approach for dynamic flexibility and
evolution in workflows based on accepted ideas of
how peoplc actually work (called Activity Theory). In

A A& AA37] 8 Event Caleulus 719H] §1223 248 2y 13

Worklets, each task of a process instance may be
linked to a repertoire of actions, one of which is
contextually chosen at run time to carry out the task.
Packets of ficxibility” allow ad hoc changes and/or
building of workflows for highly flexible processes,
providing the ability to cxecute based on a partially
specitied model, where the full specification of the
model is made at run time. A constraint-based
workflow model"™ combines the advantages of a
declarative style of modeling and allows ad hoc and
evolutionary changes. which makes it is possible
both to avoid the need for unnecessary changes and
restrictions using a more declarative stylc and to
provide support changes at the schema and instance
level.

Artificial Intelligence Planning: In the meantime,
mcthods from the artificial intelligence planning
community enable composition, adaptation, and
synthesis of processes, thus providing the means to
expand predetined process libraries to accommodate
new situations and requirements. In addition, this
community provides icchniques for modifving
activated processes in response to run-lime [ailures
and unexpected events. Two aulomated plan
generation methods lend themsclves most naturally
to the synthesis of new processes from libraries of
previously defined processes. Hierarchical task
network (HTN) planning™! synthesizes plans using
libraries of processcs (referred to as task network)
defined over multiple levels of abstraction. Planning
consists of incrementally refining tasks at high levels
of abstraction by applying morc refined task networks,
eventually bottoming out in a sct of directly executable
tasks. HTN planning is well-suited to workflow
management, given the similarity belween processes
and task nctworks. Case-based planning*™ generates
new plans for a given siluation and task by retrieving
solations for similar problems from a previously
defined case library, and then adapting them to meet
the requirements of the current situation. As such,
case-based planning methods provide a way to build
an expericnce with previously defined processes,
providing adaptation (o suit new conditions and
requirements,

2.3 Event Calenlus

The event calculus is based on axioms concerning
notions ol events. properties, and the time points at
which the properties hold. The following primitives
present the essentials of the event caleulus!'.

cholds —PxT
: holdsp. ¢ means that property peP is true at

time ¢<T.

s happens c E X T

: happensfe, & means that event ecE occurs at
time e T.

» initiates C E X P xT

: initiates(e, p, 1} means that if event e E oceurs at
time ¢<T, it will initiate property peP.

v terminates T E X P XT

: terminateste, p, 1) means that it event e E occurs
at time 7€, it will terminate property peP.

sclipped =T xP xT

elipped(t, p. ty means that properly peP is
terminated between times £,€T and ¢,€'T.

s initinlly < P

s initially(p) means that property peP holds from
time Qe T.

v TxT

: standard order relation for time ¢ T.

Based on these primitives, the following axiom
can be defined,

Axiom 1. (Basic Event Cafculus)

* holds(p, ¢ < initicilvip) A~ clipped(0, p, 1).

* holds(p, 1) < happenste, t,} initiates(e, p, ty) /'
o<t A “elippeditn p, 1.

« clipped(t, p. 1) « happensfe’. 1’} 7\ terminates
fe'. p.t’) Atg<<1 <t

Axiom | means that a property p holds at the time
¢ it p holds initially or for the period afier an event ¢
happens at time /,, and there exists no such an event
¢ which happens between ¢, and ¢ and terminates the
property p.

3. Workflow Specification based on
Event Calculus

The various workflow modeling techniques differ
slightly in the extent to which they provide the
ability to model different domain and sysiem
perspectivest' . The control flow petspective describes
activities and their cxccution ordering through
different constructors, which permits execution-flow
control. The data perspective deals with business and
processing data, which is layered on top of the
control perspective. The resowrce perspective provides
an organizational structure anchor to the worktlow in
the form of human and device roles responsible lor
executing activities. The operational perspective
describes element actions executed by activity, where
the actions map into underlying applications. [deally,
what might be needed is the development of a single
and holistic technique that could effectively represent

FFCAD,CAMEE| =R A5 A 15 20108 29

14 olaly, May

all modeling perspectives in a thorough and concise
form and hence be applicable in all modeling
situation.

Clearly, the control flow perspective provides an
essential insight into a workflow specification’s
effectiveness. In this paper, we are interested in
catching the control flow perspectives of workflow
and propose a formal [ramework for specilying and
cxecuting workflows based on the event calculus. To
the best author’s knowledge, the fGamcwork for
specifying and executing workflows based on the
event calculus was first proposed by Cicekli and
Yildirim!"®l. They have demonstrated how the event
caleulus might be extended to describe the specification
and execution of activities in a workflow. However,
they only deal with the routing rules without
activily’s state transition and dynamic environment.

The event calculus is the formalism reasoning
about time and change!'"’!. It uses general rules to
derive that a new property holds as the resuit of the
event. With the narrative basis of the event
calculus''® we can cope with the abnormal situation
during workflow enactment as well as standard
workflow representation. An important featurc of the
event calculus is that it can be extended, without too
much difficulty, to deal with some problems that are
extremely hard to represent using other formal
languages.

The workflow specification can be described by
the basic axiom (Workflow Event Calculus : WEC),
the state fransition (W), and the routing control
(W,ing}- The action in W, means any event that is
considered relevant in a process involving routing of
a workflow. The state in W, means the property
that is effect from relevant action. The routings in
W, ouing are the temporal relationship or associations
among actions, and consist of Aappens clauses and
ordering of time points. Workflow Event Calculus
(WEC) can be defined as follows.

Axiom 2. (WEC)

» holds(statefactivity), ¢

< initially(statefactivity)) /A~ Elipped(Q,statefactivity),
1.

* holds(statefactivity), 1)

« happens(actionfactivity), ty, initiates{action
{activity), statefactiviy}, 1) N\ 1y <t A " clippedft,
state(activity), t).

sclipped(l, state(activity), 1) < happensfaction’
(activity), t)), terminates(action (activity), state
factivity), t) Aty < £* <t

WEC means that a state(activity) holds at time 7 if
a state(activity) holds initially or for the period after

FFCAD,/CAMEE] =23 4158 A1ZE 20004 24

an actionfactivity) happens at time #,, and there exists
no such an action (activily) which between ¢, and ¢
and terminates the statefactivity). Example 1 means
that the activity is running at time ¢ if it holds initially
or for the period after run action at time #,, and there
1s no action which happens between #, and ¢ and
terminates its running state.

Exampie 1.

* holds(runring(activity),)< initially(runmingfactivity))
A “elipped(l), runningfactivity), i).

* holdsfrunningfactivity), ()<« happens(run (activity), ty)
Alinitiates(runfactivity), running(activity), ty)
Aty £+ A T Clipped(t, rummingfactivity), t).

* clippedft, running(activity), t)<>happens(suspend
(activity), t’) A (terminates(suspend(activity),
runningfactivity), t)) V' terminatesfaborifactivity),
runningfactivity), t'5) Aty <’ £t

3.1 State Transition (W)

The individual activity instance of a workflow will
change its state in response to the actions, The
descriptions of the states are as follows.

« not_initiated: if a workflow instance has been
created, then all activities in the workflow are
initially set to the not_initiated states.

* initiated: an activity instance has been created,
but the activity has not yet fulfilled the conditions
to cause it to start execution,

* running: an activity instance is processing.

» completed: an activity instance has fulfilled the
conditions for completion.

* suspended: an activity instance is quiescent.

* aborted: the execution of an activity instance has
been stopped before its normal completion.

Fig. 1 shows how the related actions (i.e., trigger
start, restart, complete, suspend, abort) change the
state of an activity, and which state transitions are
permissible.

st3 current activity
next activity

Fig. 1. State transition diagram.

A EF g d-a 21 9s17] Y3t Event Calculus 718%e] §171£2 5 vl 15

In this paper initiutes and terminates predicates
are used to specily how the state of an activity can
change. In addition to defining which states they
initiate or terminate, the required preconditions for
activating these predicates can be specitied using
holds predicate. Therefore all state transitions can be
specified in terms of a set of initiates, terminates, and
holds clauses as follows.

* (S, initiatestactionfactivitg, statefactiving,
« holds(precondition(activity). 1)

* (S} terminates(actionfactivity), statefactivity). ¢
«- holdstpreconditionfactiving, t).

{S)) or (S:) means that if a preconditionfactivity)
holds at time ¢, then acrionfactivity) occurs at the
same time and will initiale starefactiviny) or
terminates statelactiviry; tespectively. The functional
argumenis in (S)) and (S;) are represented as
[action_name, state name, precondition_name]. We
formalize all state transitions using (S,) and (S;) in
axioms 3-~§.

Axiom 3. (nor_initicied state : N,)

7 i, initially(not initicted(activitvy).

(S {action, state, precondition]

- {{start. aborty. not_initiated, not_initiated].

: All activities are in not_inriated states from initial
time. Il an aceiviy is in a not initiared state and one
of lollowing actions trigger or abors occurs at time £,
then the action terminates nof_iitiated(activity).

Axiom 4. (initiated state : 1,,.)

*(Sy faction, state, precondition]
=/fstart, initiated, rnor initiatedy,
inftidted, (rinming, completed, suspend)f).

* (8. faction, state, precondition]

- [trun, abort), initiated, initiated].

o If an gctivity is In a not initated state and an
action migger occurs at time 7, then the action
initiates initiatediactivity). 1f an gctivity is in one of
following states, rumning or suspended state and an
action restart occurs at time f, then the action
initiates initicted(ucrivityy. 10 an aetivire is in an
initiated state and one of following actions szart or
ahort occurs at time 7, then the action terminates
initiated(activity).

[rework,

Axiom S. frunning stare : R0

*(Sy faction. state, precondition] = [frun, running,
initiced]. [resume, running, suspended]).

*(Sy) faction. state, precondition] = [(suspend,
complete. abort, rework). vrunping. running].

2 M an aetivity s in an initiated or a suspended

statc and respectively an action stari or resume
occurs at time 7, then the action initiates running
tacrivityy. Il an activity 1s In 4 running state and one
of actions [ollowing suspend. complere. abort. or
restart oceurs at time 7, then the action terminates
rumningfactiviey).

Axiom 6. (suspended state | Sy

«(Sy [action, state, precondition] = [suspend,
suspended, runningf.

*(Sy Jaction, state, preconditionf - f(abort, resume,
rework). suspended. suspended].

10 an activity is in a running state and an action
suspend oceurs at time 4, then the action initiates
suspendediactivity). If an activity is in a suspended
state and one of following actions abort. resume, or
restart occurs at time ¢, then the action terminates
suspendediactivity).,

Axiom 7. (completed state © Cuud

«(S,) faction, state. preconditionf

= [complete, completed, running{.

o (Sy faction, stute, precondition]

[rework, completed, completed].

: If an activiny is in a running state and an action
complete oceurs at time 7, then the action initiates
completedfactivityj. Notice that there is no action
terminating compleredfactiviry).

Axiom 8. fuborted state : Ayy.)

» (S)) faction, state, preconditionf [abort, aborted,
fnot_initiated. initiared, runming, suspended) .

: 10 an wetiviey is in one of following states,
not initiared, initiated, running, ot suspended and an
action abort occurs at time 7, then the action initiates
aborted(activityy. Notice that there is no action
terminating abortedfactivity).

3.2 Workflow Routing Controls (W, un;)

Sequences and dependences among aclivities can
be specified in several ways: two activitics can be
directly connected, with the meaning that, as soon as
the predecessor is completed, the successor is ready
for execution, In all other cases, connections among
activities are performed by special-purpose routing
rules: splits and joins. Compositions of splits and
joins may be used to represent iterations or other
complex routing structures''™,

A split is preceded hy onc activity, i.e., predecessor,
and followed by many activitics, i.c., sSUCCESSOTS.
Splits are classified as And-Split and Or-Spiir.

» And-Split: after the predecessor is completed, all

SUCCESSOTS are 1o run.
« Or-Split: cach successor is associated with a

HZCAD/CAMERE] =03 A 15 E A1 Z 20108 29

16 ol ay

branch condition, and after the predecessor is

completed, conditions are evaluated and only

successors with a friue condition are to run.

A Join is preceded by many activities, ic.,
predecessors, and followed by one activity, i.c.,
successor. Joins are classified as And-Join and Or-
Join.

» And-Join. only after all predecessors are

completed, a successor is fo run,

» Or-Join: the successor is to run every time

whenever a predecessor is completed.

Axiom 9. (Serial)

« initiates(trigger(Y), initiated(Y), 1) holds(path(X,
Y},) « holdstcompleted(X), 1).

: There is a path between a predecessor X and a
successot ¥, and Y is initiated as soon as X is
completed (Fig. 2-a).

Axiom 10. (And-Spiit)

s initiates(trigger(Y,), initinted(Y}), § « holds(path
(X, Y,). 8 holds{compieted(X), 1),

« nitiates(rigger(Yy), imitiated(Y,), o <« holds(path
(X, Yy, 1 holdscompleted(X), 1),

« initiates(trigger(Y,), initiated(¥,), t}) holds(path

(X, Y. 1) « holds{completed(X). 1). i

: There are paths between a predecessor X and
successors ¥V, Y, ., Y, and all ¥, Y, ..., Y, are
initiated after X is completed (Fig. 2-b).

Axiom 11. (Or-Split)

o initiates(trigger(Y)), initiated(Y,), 1) < holds(path(X,
Y, § A holdstcondition(XYy), 4 / holdstcompleted
X, 1.

« initiates(trigger (Yy), initiated(Y>), 1) « holds(path(X,
Yy, § A holdsteondition(XY), ¢ A holds(completed
X, 1.

« initiates(trigger (Y,), inftiated(Y,), 1) « holds(path(X.
Y, ¢ A holdsteondition(XY,), ¢ A holds{complered
0, 9.

: There arc paths betwecn a- predecessor X and
successors Y, Yo, ..., Y., and after the predecessor X
is completed, condition(XY,) are evaluated and only
successors with a frue condition are mitated (Fig, 2-

c).

Axiom 12. (4nd-Join)

» miticies(irigger(Y), initiated(Y). max(t,, t, ...,
i)

« holds(path(X,, Y), tj / holds(path(Xs, V),)
Ao A holdstpat(X, Yi, t) A holds
{completed(X,), t;) /A holds(completed(Xy), ty A,

3CAD,/CAMEE] =23 133 A1 3 20108 29

. A holdsfcompleted(X,). 1,).

: There are paths between predecessors X, Ao, ...,
X, and successors ¥, and only afier all predecessors
X, X,. ... X, are completed, a successor Y is initiated
(Fig. 2-d).

Axiom 13, (Or-Join)

« initiates(trigger(Y), initiated(Y), t)

« holdstpath(X,,),) AholdsipathiX,. ¥),) A

, . Y holds(pathdX, Y), 8} A (holdstcompleted

Xy, § V' holds(completed(X;), vy V, ..., V
holds(completed(X,), t).

: There arc paths between predecessors Xy, X, ...,
X, and successor ¥, and the successor Y is initiated
cvery time whenever any predecessor X, i = 1, 2, ...,
n) is completed. Generally Or-Join dcfinition is not
easy in work{low context, and many applications use
the Or-Join term as exciusive join (XOR-Join)
insiead. In this paper, OrJoin is considered as
iterative join in that the activities arriving later at
joining point cannot be started immediately but in the
initiated states until the earlier (in running) will be
completed, suspended, or aborted (Fig. 2-¢).

Axiom 14. (Loopj

* initiates(trigger(Y,), initiated(Y). §

« holdstpathtX,, Y,. t Aholdsfloopcondition

XYy 8 A holds(completed(X), 1.

« Initiates(trigger(X,), initiated(X), 1)

< holds(path(Y,, X)). 1} Nholds(completed(Y,), 1).

: Like Or-Spiit, a branch activity .X, in a loop can
be associated with a Joop condition, which is
evaluated whenever the activity is completed. A
merge activity Xjin a loop can be considered as a
successor in Or-Join. In a loop, the merge activity is
in a completed state, because the merge activity has
already been done (Fig. 2-f).

Now we look at how the routing axioms (W,ng)
can be used to specify the workflow process by an
exarple. Considering the workflow in Fig. 3, there
arc 12 activities indexed by from A4 to £, and flow
and the routing controls such as the And-Split, Or-

(a) Serial (b And-Split (e) Or-Split
® @
{d) And-Join (e} Or-Join it Loap

Fig. 2. Workflow routings.

AEADERL A A57] 98 Event Caleulus 719H] H2E2% 2o 17

Fig. 3. Workflow example.

A Serial*
initiates(start(d).initiatedt4 .14
—holdsipathtbegin,).t - holdsfeampletedibeging. i61).
initictesistart(By initicted(By.11)
—holds(parh(4.B).11) - holdsfeompletediAjil).
initictesfstartG, initictedt G161
+-holdsiputh(E,Gp.16) * holdsicompleted(F1.16).
initiatesistarttend). initiotedfend) ¢ 1}
—hutdsipathiK,end) 111) - holds{completed(K).t11).
M And-Split*:
initiatesfstart{Cy, initiated(Cr.12}
—holds(path(B.Crt2) .~ holdsicompleted(B).12).
initiates(start{D). initiatediD}.12)
—holdstpath(B,D).12) .+ holdsicompietediB1.12).
intfiateststart(Ejanitiated(E;.12}
—holdapath(B.E)121 ~ holdsicomplered(B),12).
#And-Join*/
initicites(stantiFh.initiated(F),max(13.4445 1
—holds(path(C.1j.03) A holdstparh(i).F1.14)
5 holds(path(E F,15) 1 holds{completedtCy.t3)
A1 holdsfeomplered(I).ed) 4 holdsicompieteditiii)
HOr-Split*/
indtiatesistart(t) initiated(11)47) —holdsiputhtG,11.17)
A holdsteondition(GH).17) A holdsieompleted(),(7).
initiatesfstartil). initiaedi) 17y «—holdsipathi(;.1).17)
A holds(condition(GI)e7) 2 holdstcompleted(G1,67).
AQr-loin*;
initiares(stari(). nitiared(s), 13}
—holdsipath(H J468) A holdsipath(l Jp.t8)
A tholdsteompleted(TD.8y v holdsieompletedii).i8)).
#Loop*/
initiateststartfK) initiuediK) . 19) «—holdstpathiJ K),19)
A holdstconditionf JK ;.14 <+ holds{completedi.i).19).
initiateststart(l s, minared(1.).19) —holds(paritf,1.),19)
A holdstconditiontJL) 195 A holdstcompleted())19).

initiatesistartt Gy initiared(G). 16) !
—holds(path(L Grrify 2 holds(complerediL).} |

Fig. 4. Work(low specification example.

Spit. And-Join, and Or-Join to model serial,
conditional, parallel and loop routing. While parallel
routing normally commmences with And-Split and
concludes with And-Join, conditional and loop
routing commence with Or-Splir and with Or-Join.
Fig. 4 shows the workflow specification for the Fig. 3.

4. Workflow Change Patterns

To design worktlows in changing and dvnamic
environments, a flexible, correct, and rapid realization
of models of the activity flow is required. We are
concerned with dynamie structural change. *Structural’

means that we are concerned with changes to the
structure of workflows; we are not concerned in this
paper such as changes to the valuc of an application
data variable. *Dynamic’ means that we are required
to make the change ‘on the fly' in the midst of
continuous execution of the changing procedure. Not
only the correctness and consistency betore and after
dynamic change, but also the state of an activity in 4
workflow is the major criteria for deciding whether a
specific structural change can be applied to it or not.
As an example, the new addition of an activity
between the two successive activities should not be
permitted if the successor was already completed.

In particular, techniques are needed to design
workflows capable of adapting themselves etfectively
when dypamic situation oceurs during process
execution. In this section, we present an approach to
flexible workllow design based on patterns applying
WEC. W ye and W, of the previous section. Now
we define patterns that can frequently occur in
workflow modeling.

When a new activity is inserted into an existing
workflow, new paths must be added (by initiating the
new path) and old paths must be removed (hy
terminating the old pathy while maintaining the
corrcetness and consistency of the workflow,

Let be a finite sct of patterns /7 {P,, Py P, P,
Pt A pattern P, € [Tis defined as 2-tuple, F; =
<Name, Template=, where, the name of a pattern
should be mcaningtul to indicate its purpose and be
unique to identify the pattern, and the template of a
paticrn is defined as a non empty sel of event
calculus.

4.1. Add Pattern: P,

Description: A change is of type P, if a new
activity is introduced between the exiting activities in
scrial, parallel, or conditional routings.

P, — <Add, T,» fsee {ig. 5)

/* Initial condition */

holds(path(X, Y), ¢} ~\tholds(not intiated(Y), ¢
holdstinitiated(Y). 1)).

* Change template : T, %/

step 1o initiatestadd(X. New), pathtX, New), ¢).
step 2 ¢ initiates{add(New. Y), path(New. ¥}, 1.
step 3 ¢ terminates(delete(X. Y), pathiX, Y. ¥).

State constraints: The add pattemn can be applicd
to following situations: serial, parallel (And-Splir and
And-Joim) or conditional (Or-Split and Or-Join).
Furthermore, the applicability of the add pattern
depends on the state of he activities in a workflow.
To avoid the addition of a new activity as a not-

HFZCAD,/CAMTFS] =g A0S & 20004 29

18 olgA, Mad

accepted state such as running or completed, we
requirc that all successors of activity New must be in
one of the states not initiated or initiated. The
predecessor of activity New may be in an arbitrary
state.

initial slep)

EO—D
Bl pnae, ¥p, 42 A theidSirave imtiaredt . 5
whidstimitiateds ¥, 17

stop 2 Toow step d N
Ok >

imeticetey s New, i, peahfdew ¥i. 3

itithues odd X, Nows, poths . Nuew), 4

termmacsadiete X, ¥y, pathiX. b, i

Fig. 5. Add procedure.

4.2. Delete Pattern: P,

Description: A change is of type P, if an activity is
removed between the exiting activities in serial,
parallel, or conditional routings.

Py = <Delete, Tp> (see Fig. 6)

/* Initiad condition */

holds(path(X, Y), 4§ A holds(path(Y, 2},) »
(holds(not_intiated(Y), t} V' holds(initiated(Y), t)).
/* Change template - Ty */

step 1. initiatesfadd(X. 7). path(X, 7}, 1).

step 2 : terminates(delete(X, Y}, path(X, Y, o).
step 3 : terminates(delete(Y, Z), path(Y, 7}, 1).

State constraints: The delete pattern can be also
applied to following situations: serial, paraliel {And-
Split and And-Join) or conditional {Or-Split and Or-
Join) routings. Furthermore, the applicability of the
delete pattern also depends on the state of the
activities in a workflow. The deletions of an activity
Y is possible, if the activity which is going to be
deleted is either in the state not_initiated or initiated,

ikl aep | _,——-\”
CEOsCTICTD | STl T
Bordsiparh{¥.X) 0 2 ol ipenbly. 75, 1y 4

friltiGes 4. XL
chotdsing \iatedS Y, 1) v holdviimesanedty), 1) mHias SR . s bR . &

step 3 —
s o ¥

Wrminadesidelotett, &), patt .2).

step 2 ——
x5 >

ecrmiinaisidere (X). pah((¥, 0

Fig. 6. Delete procedure.

4.3. Replace Pattern: P,

Description: A change is of type replace
(composilion of add and dclete} if an activity is
replaced by another activity in serial, parallel, or
conditional routings. The replace pattern always can

P-4 CAD/CAME 3 =84 4153 31 & 2010 29

be composed of P, and P, pattern.

P, <Replace, T.>
L=T,/T,

4.4. Reorder Pattern: P, = P AP,

Description: A change is of lype P, it activities are
reordered without addition or removal. Reorder
pattern is comprised of the followings: serializing
activilies that were previously allowed to run in
parallel (P,) and parallelizing activities that were
previousty allowed to run in serial (P,). Notice that
conditionalizing activities that previously were
counstrained to execute in parallel and vice versa are
not involved in the structural change.

P,. = <Reorder,, T,.> (see ig. 7}

£ Initial condition */

holds(path(X, Y). ©) Aholds(path(X, Z), o A
holds(path(Y, W}, i Aholds(path(Z, W), 1)

A “holds(completed(Z), 1).

¥ Change template © T, %/

step 1 : initiates(add(Y, Z), pari(Y. Zj, 1).

step 2 : terminatesfdelere(X, Zj, path(X, Z), 1).
step 3 : terminates(delete(Y, Z), path(Y, W), 1).

State constraints: In Fig. 7, a workflow, which
originally does activity Y and Z at the same time,
makes a dynamic change to its procedure by
performing activity Z after activity Y. Although the
procedure looks safe after the change, there are
problems that could potentially surface during the
change!™'"l For example, after activity X is
completed, the successors Y and Z start to run in
parallel, and there may happen that the activily Y is
still running and the activity Z is alrcady completed
after some while. 1f the dynamic change P, on the
fly occurs at this time, the activity W will be startcd
to run without compicting the activity Y due to the
routing rules, and this is an undesired result. This
undesirable bug can be avoided by simply writing
holdsfcompleted(Z), 1).

wyical _Y)\ step £ y
G KT G W
Zz

G {patht N s, b . Ieicds ignthi N 7). 1)
ru‘ W 8 o Aoy WL HY 1)
~ —hlebtenmplotedi 21, 1

initictesiadh ¥.2). puthi¥.2), 1)

step 3

SN Fa
-)}E)] W
2 z

terminanesidelaiedY, Wy pakiY05), ¢

step 2

rermntesideletet X2, patii K 23, 5

Fig. 7. Reorder procedure {Serializing}.

AFTRE AL A21517] 218F Lvent Caleutus 718ke] 7808 M@ 19

P, <Reorder, T,> (see Fig 8i

A Initial condition

holdstpathiX. Yy, t) holds{path(Y. £) holds(path(Z,
W) u.

* Change template : T, %

step | initiatestadd(X. Z). path(\. Z), ¢).

step 2 initiatestaddiY, W), pathiY, W). 1).

step 3 terminates(deletecY. Zj, path(y, Wy 1.

State constraints; In Fig. 8, a workflow, which
originally executes activity Y and Z in sequential
order, makes a dynamic change to its procedure by
performing activity Y and Z in parallel, i.e., there is
no ordering relationship between the activities Y and
Z. Inthis change, there is no problem and it is always
possible to transfer.

il step | .
SeSNasSies S arll fes S apttersia

holdsspathiX, Y), i holds(pak ¥ 7, 1) P .
P " '$tcadd(X.2), X 7). 4
doldsipath(Z,). 4 imtiatestaddX.2), pathtX 7). 1

step 2

step 3
OGO | X
-

e St
indtitestade(Y Wi path(Y ¥, weminatestdriesed V.20, path(Y 2. 1

Fig. 8. Reorder procedure (Parallelizing).

5. Workflow Execution and Planning

The worktlow management system is composed of
two main components: the process definition and
workflow enactment service. The process definition
is used in build-time to generate a computerized and
executable definition of a workllow. In commercial
workflow management systems, it provides graphical
modeling tools and heips the designer 1o design. test,
and validate worktlow process. In this paper, the
process definition is characterized by the workflow
specilication applying event calculus proposed
section 3. The workflow enactment service s
composed of a sel of software modules for creating
and controlling instances of processes during run-
time, and provides the run-time environment in
which workflow management systems also manage
the execution and sequencing of the various activities
of the workflow.

5.1. Abductive Planning

We describe how 1w execute the workflow
dynamically based on the workllow specification {in
section 3) and workflow change pattems (in scction
4) wsing abductive planning technique. For the
dynamic workflow execution, we apply the abductive
planning ¢ the cvent calculus, and abductive

planning will produce the ordering of actions which
comprise the workflow. We firstly give a brief
introduction to the abductive inference rule. At first
the rule of inference called resofution which is based
on modus ponens augmented with wnification is as
follows; ‘from p < g and g, we can infer p°. While
our workilow execution is based on the abduction
inference rule: ‘fromt p < ¢ and p. we can infer ¢’

That is, given a rule p ¢ ¢ and a fact p, abduction
generates an explanation for p by stating the fact ¢.
This is not a sound inference rule, however, because
g does not logically follow from p « ¢ and p.
Therefore. ¢ must be seen a hypothetical explanation.
11" the implication p < ¢ corresponds to the notion of
causality, then abduction will gencrate plausible
explanations.

Now let’s explore how this abductive inference
wle can be applicd to the dynamic workflow
execution. A plan consists of the set of facts defined
by the predicates happens and temporal ordering
fonnulae {<). This sct can represent a plan because it
defines the actions that happen and the time ordering
between actions,

Definition 1. A plan P is a solution for a goal G
with respect to the theory 7 and history A such as T
AH A P infer G where, T= WEC A W, -~
W 7L

This definition means that any planning problem P
consists of tfinding one or more valid and possibie
paths can be generated trom the workilow specification
theory T and the current history / to a given goal G
History # is initially cmpty and will be updated as H
< P every time plan P is generated by a dynamic
goal state. 11" a desired goal G is related o the
modifications of the existing workflow, then the
structure of a workflow can be changed by a set of
primitive provided pattems.

We present examples to show how the dynamic
workflow paths and related aclivity states are
generated and stored through the abductive planning,
Let's see the workflow example in Fig. 3 again,
Initially all activities are in the wrot initiated stales
and initiatedibeging sets 1o true. If our desired goal
state is holdstcompleted(B), ti, then one possible plan
P (there can be so many solutions including repetition
of happensfsuspendiX). 1) and happenstresumerX),
t)2 1s the conjunciion of the following happens and
temporal ordering formulae (<).

P = [happenstirigger(Ajtl), happensistari(4).62},
happensicompleiel4).13), happensimiggertBi3). happens
(start(Bi.td), happensicomplerefB),e5s. 112, 1243,
13«44, 14<t3].

H=CAD/CAMEHE] =iy A 15 A & 20108 24

20 o181y, MEY

Fig. 9 is the abductive proof tree of the above
example, representing the top down search space of
possible paths using dynamic workflow specification
rules. This search space will be terminated until they
found the initial condition or adequate history H.

holds{completed(B), 1)
intrialiy(completed(B)) - No
WEC initiates(action;(B), completed(B), 1
oo - QCtiON; = complete
w Ei‘nifz‘ax‘u(campleu(B). completed(B), i
s holds(running(B), 1
inttially(running(B)) - No
WEC initiates(actiony(B), rumming(B), 1}
happens{action(B). 1}

. initic a3/,
“‘E holds(initiated(B), ¢
inirially(initiated(B)} - No
WEC |~» initiates(actions(B), initiated(8), §
happensiactiony(B). 0 ﬁ*

Wy action: = run

9

W comic - GCtioN; = Start

A it il i(B).9
[iscomplaeitt,

wntil |
........ + initiolly(initiated(start)) - Yos

Fig. 9. Abductive proof tree.

Now let's assume that we are at time t,,,(= t; +
some time), i.e., both activities A and B were
completed, and we are now performing the parallel
activities C and D, and we have completed E, ie.,
holds(running(C), t.), holdstrunning(D), t.,,), and
holds{completed(t), t,,). To make a dynamic
change by performing activity E after D serially
instead of parallel processing will fail because
change pattern P, will preserve reasonable change
(Fig. 10). Without losing control, one can evaluate
the dynamic situation at workf{low running time and
cope with any dynamic change.

begin

not_jniticied

completed completed

completed

serialization of D and £

initiated after C is completed

of
begin complered completed

Fig. 10. Example of dynamic change.

Given H which is updated as P N holds(running
(C), buny A holdsrunning(D), 1,,,,} A holds(completed
(E), i) (Fig. 11), we assume next goal state G =
holds(completed(G), 1), then the valid plan £’ will be
generated (Fig. 12) as follows.

P = fhappens(complete(C),t1), happens(complete(D),
12), happens(trigger(F), 3=max{t1,2)), happens(start

$ZFCAD,/CAME S =57 A5 A14 201008 29

(F). t4), happensfcomplete(F),t3), happens(trigger(G),
t3). happens{start(G).t6}, happens(complete(G),i7).
t3<14, 14<5, t3<46, 16<47].

begin completed completed not_jnitiated not_initiated

completed

Fig. 11. Examplc of history.

begin completed completed completed completed

comprted

Fig. 12. Example of planning result,

If our desired goal state G is like holds
{completed(K), 1}, which is for the last activity in the
workflow, abductive plan P is considered as workflow
scheduling to generate event notices for all activities
that can be performed.

5.2. Correctness and Soundness

Event caleulus is an express representation language
for planning problem. Consider the following example,
taken from'®!,

initially(r}.

initiates(e;, p, 1).

initiates(es, g, 1).

terminatesfe;, r, t) < holds(g,).
terminates(es, r, 1) < holds(p, 1).

: the terminates rules define the context dependent
effect, ie, e, terminates v if g holds, and e,
terminates v if p holds. Given the goal G = fholds(p,
¢ A holds(q. ©) / holds(r, t}], the abductive planning
would find the following solution considered incorrect.

P = fhappensfe,. t,), happens(e, t), {; < 1, < t].

This example shows that correctness problems
occur in the case of context dependent terminating
events, and all non-linear planners that allow for
such effects are incomplete and generally incorrect.
However, we can exclude such events because there
is no action in our workflow mode! that interferes
with each othcr in a conlext dependent way.

An abductive planning must meet certain constrainis
to ensure the corrcct execution of the workflow at
run-time.

AENEEA L A317] 43 Event Caleulus /18] 2524 293 21

Fisst, an arbitrary goal state holds(complered
factivity}, £ should be true in a worktlow instance by
the appropriate plan. Consider the following example,

» initiatesftrigger(B), initiated(B), 1}

<« holds{puth(A. Bj. § A holdsfconditionfAB}, {
A holds(completed(d), 1).

* imitiates(trigger(C). initiated(C), 1}

<« holds(path(4. C). v 4 holdstcondition(4C),)
A holds(completed(d). ¢

» initiatesfirigger(D). itiated(D}, 1

- holdstpath(B. D), ti - holdstpath(C. D), 1) /
holdstcompleted(B). 1) A holds(completed(C), 1).

Given the goal G = holds(compleied(D), 1), the
abductive planning would find the failing intermediate
solution. As shown in Fig. 13, in order that Aolds
fcompletedD). 1} should be true, both holdstcompleted
(B). 1 and holdstcompletediC), t) are to be true,
Howcver, this could never happen, when pathi4, B)
and path(4, Cj are alternalive, so only one of
conditionfAB} and condition{4C)should hold at the
time activity 4 is completed.

Second, the workflow will be finished eventually
and at that moment there should not be any activity
that is running. Consider the following exampte,

* initiates(trigger(B), initicted(B).)
 holds(path(4. Bj, ti - holdsicompleted(4), .
s inttiates(trigger(B), initiated(B). 1)
« holds(path(C, Bj, ti -~ holdsicompleted(C), 1.
» initiates(trigger(C), initiated(C), 1)
« holdsipatht4, Cj, 1) A holdsfcompleted(A),).
« Initiates(trigger(D), initiated(D), 1)
« holds(path(C, D), 1) holdsicompleted(Cj, 1).

Given the goal G - holdsicompleted(D). ¢, the
abductive planning would find the valid solution. But
after the work{low is correctly coniplcted, there still
exists any live activily in the completed workflow,
As shown in Fig. 14, after activity C' is completed,
the action happens(trigger(B). 1} and happens(irigger
(D), 1 will be fired concurrently, and then the
activity 1 will be running and then complefed
normally. However aclivity B and C in the loop are
can be still in running states.

These two results are not desired, and we can
avoid these problems by the following methods.
Cleary the paralle! flows started by an And-Split
should not be joined by an Or-Join. The conditional
flows created via an Or-Split should not be joined by
an And-Join. In Summary, an And-Sptit should be
completed by an And-Join and an Or-Split should be
complemented by an Or-Join. urthermore, the loop

is controtied by Or-Split and Or-Join instead of And-
Join and And-splitto preserve the finite iteration.

hotdsteompletediid), ti

LAY
7 And-loin
holdsicempletedi By, ¢ holdsteompletediC), g)
v o’
happensiiniticted(b), e “‘:‘?rlpp('m'_(r'ni(imcdr_’(KN

.Or-Split |
fildstcompletediy, y

Fig. 13. Soundness Problem (1)

CaD>+oiCB D>+ O»pas»CD O

holdsicompletedin),
&

holdstcompleted(Cl, 1) -~
A B
' 3 loop
holdstcomplerediB). & 4
A

|
holds(completediA), b

Fig. 14. Soundness Problem (2).

6. Implementation

The proposed approach can be implemented in
several difTerent ways. One approach is to write the
axioms dircetly in Profog. However, this will cause
an infinite loop, because the definition of holds
predicate includes calls o initiates or terminates
predicate that in turn includes calls to Aolds. One
such abductive event caleulus planner avoiding this
problem is duc to?'!, The following’s behavior is
equivalent to that of the vanilla meta-interpreter with
the object-level clause for A .- A4;, Ay, ..., A,

demotfi, | GJ) - axiom(2,, Gi. append(G,, [4,,
o A | Gif. G3p demof(G)

This is an abductive meta-interpreter for abduction
with negation-as-failure, with buili-in feafures for
handling event calculus queries: we modify this
event calculus planner here to demonstrate how
possible paths can be generated and stored. As the
number of activities in workflow increases, the
search space in this program also expands. We can
reduce this problem space by introducing the facts of
history 7{.

The workflow manager actually runs the workflow
specification. [n normal simations, the manager starts
a workflow process by an initial plan for an initial

BZCAD/CAMEE] =8 As] A E 20008 2

22 olg|d MEY

goal. Once the abnmormal situation happens, the
work{low manager queries the new goal to cope with
this cxceptional situation, and reschedule the
workflow process. The proposed approach can be
also used as a quick tool in prototyping applications
or simulations, thus providing opportunities to
analyze the efficiency of the workflows.

The ideas discussed in this paper have becn
implemented with SW]-Prolog. The example workflow
as shown in Fig. 15 can be expressed in Prolog
syntax and the workflow planning solution R will be
obtained by the guery template, e.g. abdemo(fhoids
(state(activity),t), ... holds(state(activity),t)],Rj, where,
R is solution which consists of actions and temporal
orders. For example, after execution of queries such
as ‘abdemo(fholds(completed(f). 1}]. R)" and ‘abdemo
{{holds(pathf. ri), v, holds(pathir, g)), 1), holdsfneg
(path(f ,g)). B]. Ry, which can be interpreted as
applying state transition and change pattern respectively,
solution R will be displayed like Fig. 16. First solution
depicts the state transition results of activities C, D,
and F, and second solution shows the path change.
The Prolog file for abductive planner about this
example is partially shown in Appendix.

not_tittioned not_initiored

completed

Fig. 15. Example workflow.

ic Workfl .pl oompiled 0.05
{holds at(!I)) L33 N 9;

R = [(haypenn(mtplete(d} t7, t7). heppens(cowplete(c). 6. t6). b
appensiatart(£), 3 aunlf), €2, t2 peza

{
(f) t]. tl)] {befm(t? t.) befora(té, t?) l’ssim’e(u <b2) bef
1), betore{tl. t)

U bytes

%k
e b

Yos

?m abdesof {bolds ot (path(f. 2},). holds st{path(r,.g),t}, holds sti{n

egipath(f.)})].R}.

R'{[bnm(duleta{f g} t4, t4). happens(add €3, ¢
)}g {f. x}. €2, w2)]. [beim(t& t). haiafc(sft’.)g)t) befcu)e(ci

Yos
En

Fig. 16. Workflow planning solution.

7. Conclusion

In this paper, we have presented an approach to the
dynamic workflow specification and execution applying
event calculus extensions. The approach is based on
modcling the general flow of aclivities and the
dynamic behavior separately. Major contribution of
the approach is related to the design of workflows in
changing and dynamic environment, while preserving

2CAD,CAMEE =F3 A1538 Al 1E 20104 2¥

flexible and correct models of the activity flow. The
general primitive axioms and change patterns for
dynamic specification and execution mechanisms in
workflow management systems can provide a good
degree of flexibility and can be used in many
applications.

In this paper we have also shown that the activity
state transition and major types of routings (ie.,
Seriad. And-Split, Or-Split, And-Join, Or-Jvin, Loop)
can be expressed and how the dynamic worktlow
paths and related activity states are generated and
stored through the abductive planning.

This paper focuses on flexible specifications and
evolutionary changes concerning the flow structure,
i.e., definition of the sequence in which activities
should be executed within a workflow. Future work
in this arca includes the extensions of the analysis to
maodification of other workflow characteristics such
as data control, information handling, or organizational
operations, which can be done by considering such
predicates as: activity(agent, input, output), role(agent,
activity).

Appendix

<Basie structure of abductive planner in Prolog
syntax>

1 WEC //

* demo(fholds(S, T2)|G1]) :- axiom(initiates(4, S,
T1).G2), axiomthappens(4,T1).G3), aciom(before
(T1.72), [1), demo(fnot(clipped(T1,5,72))}), append
(G3.G2.G4), append(G4,G1,G5), demo(Gs3).

/{ Workflow State Transition Rule //

* Axiomf{initiates(uction(Activity), state(Activity),
T}, fholds(condition(Activity), T)]).

* Axiom{terminates(action(Activity), state(Activity), T),
[holds{condition{Activity), T)]).

/1 Workflow Routing Rule //

 Axiomfinitiates(start(Activity), mmated(Acltwty)
Ti), tholds(path(,).T)....holds(path(_,_),T), cond
{ },...condl j, holdstcompleted(Activity), T}, ..., holds
fcompletedfActivit}, T)]).

/! Workflow Changing Rule for Add //

« Change(X New. Ypa) - ahdemotholds(path(X, New),
#), holds(path(New, Y),p), holds(negpath(XY)).0].R). .
/ Workflow Changing Rule for Delete //

e Change(X0ld ¥pd) - abdemo(holds(path(XY},4),
holdstreg(pathX Old).1)). holdstnegipathtOld Y)),¢)],
R).

// Workflow Changing Rule for Replace //

e Change(X,0ld, NewYpr) - Change(X New, ¥pa),
Change(X,0ld. Y pd)

// Workflow Changing Rule for Rearder //

AR LA L 2| 21817] 913} Event Caleulus 719K $]7£ 2.9 2l

b2
[N}

* ChangefX Y. Z Wpos) - abdemotholds(path(Y.Z) 1), 10. Pesic, M., Schonenberg, H., Sidorovy, N, and van
holds(negiputhtX.Z)).4), holds(neg(path(Y. Wil /.R). der Aalst, W. M. P, “Constraint-based Worklow
¢ Workflow Initial Condition and History / Models: Change Made Easy™, Coopls'i7, pp. 77-

o axiomfinitiallvistate(Activit)),{]). 94, 2007,

o axiomfinitiallv(path(Activitv, Activine) f). 11. Erol, K., Hendler, J. and Nau, D. S., Semantics for

<&

= axiom{condfActivity. Activitvis {).

References

-WIMC, The Workflow Reference Model, WFMC-
TC-1003, Workflow Management Coalition, 1995,
- WIMC, Terminology & Glossary, WFMC-TC-1011,
Workflow Management Coalition, 1996.

- Miiller, R, Greiner, 1. and Rahm, E., “AgentWork:
A Workflow Systern Supporting Rule-based Work-
flow Adaptation”. Data and Knowledge Engineering,
Vol. 51, pp. 223-256, 2004.

. Adams, M., Hofstede, A.. Edmond. D. and van der
Aalst, W, M. P, “Wosklets: A Service-oriented lmple-
mentation of dynamic flexibility in Workflows™, Coo-
pISU6, pp. 291-308. 2006.

5. Reichert, M. and Dadam, I, Redlizing Adaptive
Process-aware Information Systems with ADEPT2,
Ulmer Informatik-Berichte, Nr:2013-08, 2008.

-Minor, M., Schmalen, D.. Koldehoft, A, and Berg-
mann, R., “Structural Adaptation of Workflows Sup-
ported by a Suspension Mechanism and by Casc-
based Reasoning”, WETICE'}7, 2007.

7. Weske, M., Horkflow Management Systems. Formal
Foundation, Conceptual Design, Implementation
Aspects, University of Miinster, Habilitation Thesis,
2000.

. van der Aalst, W. M. P, Weske, M. and Griinbauer,
D.. "Casc Handling: A New Paradigim for Business
Process Suppont™, Data and Knowledge Engineering,
Vol. 53, pp. 129-162, 2005,

. Sadiq, S., Sadigq. W. and Orlowska, M., “Pockets
of Exibility in Workflow Specifications™, fir: £R'01,
pp. 513-526, 2001.

(]

<

$. Shanahan, M. T,

Hierarchical Task-network Planning, Technical
Report CS-TR-3239, Computer Science Department,
University of Maryland, 2004.

. Hammond, K., Case-Based Planning: Viewing Plan-

ning as « Memory Task, Academic Press, 1989.

SVeiso, MMM .| Learning by Analogical Reasoning

in General Problem Solving, Ph.D. Dissertation, Car-
negie Mcllon University, Pittsburgh, PA, 1992,

14, Casati. F.. Ceri, S., Pemici, B, and Pozzi, G, “Work-

flow Evolution™, Datu & Knowledge FEngineering.
Vol. 24, pp. 211-238, 1998.

. van der Aalst, W. M. P. and van Hee, K., Horkflow

Management: Models. Methods, and Systems, The
MIT Press, 2002,

. Cicekli, N K. and Yildirim, Y. “Formalizing Work-

flows Using the Event Calculus”, LNCS, Vol. 1873,
pp. 222-231, 2000.

. Kowalski, R. A. and Sergot, M. J., “Logic-based

Caleulus of Events”, New Generation Computing,
Vol. 4, pp. 67-95, 1986.

. Solving the Frame Problem: A
Mathematical Investigation of the Common Sense
Law of Inertia, MIT Press, Cambridge, 1997

. van der Aalst, W, M. P, “Exterminating the Dynamic

Change Bug: A Concrete Approach to Support Work-
flow Change”, Information Svstems Frontier, Vol. 3,
No. 3, pp. 297-317. 2001.

. Missiaen. L.. Bruynooghe, M. and Denecker, M.,

“CHICA: A Planning System bascd on Event Cal-
culus™, The Journal of Logic and Computation. Vol. §,
No. S, pp. 579-602, 1995

?1. Shanahan, M. T., “An Abductive Fvent Calculus

Planner”, The Jowrnal of Logic Programming,
Vol. 44, pp. 207-239, 2000,

o =8 H

190642 SH| SR Ak Zshat ok

1998 ghaaldhr) gl 2 eha Hat

2007 Bt wn“? AWRfhk wpat

200351 RY-2008% RY A Ak 2R
EREIETEEE)

20083 % -2 thpfElE A&
W 3akah WA

J

AAlBok Workflow Management,
PLM

M & ¥
o8I glrchat 714 Z-8ha 5

2}
(983 Bkt 0) A1 8 AL
19913 West Virginia University 4F
' 55t} kAL
{19834 1987 T T B
A orgldel
19921995 abzjd-r gl ks
A EIM{]H /‘=/.404| =_l)
1996 -7 F=a= IEUI’“%J -8
4 3%
S FoL CEPDMICPCPT M, Workflow
ManagementRPM, Ontology?
Knowledge Rased System

4]

FZCAD,CAMEE 227 A 1IsE A 1E 20008 24

