DOI QR코드

DOI QR Code

Determination of K values from tunnel model tests in sandy ground

터널모형실험을 통한 사질토 지반에서의 K값의 산정

  • 이용주 (서울산업대학교, 건설공학부) ;
  • 류창열 (서울산업대학교, 건설공학부)
  • Published : 2010.01.31

Abstract

This study mainly focused on the subsurface settlement due to shallow and deep tunneling in sandy ground. In order to figure out theoretical deformation patterns in association with the ground loss during the progress of tunneling, laboratory model tests using aluminum rods and finite element analyses using the CRISP program were carried out. As a result of comparison between the model test and the finite element analysis, the similar deformation patterns were found. In addition, it was identified that the most K values obtained from both the FEA and the model tests were distributed between Dyer et al. (1996) and Moh et al. (1996) of the field observation data. Based on the model test data, the linear equation of K for the sandy soil could be obtained.

본 연구는 사질토 지반에서의 얕은 터널과 깊은 터널굴착으로 인해 발생하는 지중침하에 주안점을 두었다. 터널 굴착과정에서 일어나는 지반손실에 따른 이론적인 변형형태를 규명하기 위해 알루미늄 봉을 이용하는 실내모형실험과 CRISP프로그램을 사용하여 유한요소해석을 수행하였다. 모형실험 결과와 유한요소해석 결과를 비교 분석한 결과, 서로 유사한 변형형태를 가지는 것으로 나타났다. 또한, 지중침하곡선의 폭에 대한 계수인 K값은 Dyer등(1996)과 Moh 등(1996)의 현장측정 값 사이에 분포하는 것을 확인할 수 있었다. 터널모형실험 결과를 토대로 사질토 지반에서의 선형적인 K방정식을 얻을 수 있었다.

Keywords

References

  1. 이용주 (2008), "기존 파일기초에 근접한 터널굴착으로 인한 전단변형률 형성에서의 경계선", 터널기술, 한국터널공학회 논문집, 제10권, 제3호, pp. 283-293.
  2. 손무락, 윤종철 (2009), "터널굴착으로 발새한 지반거동에 대한 수치해석적 분석", 터널기술, 한국터널공학회 논문집, 제11권, 제3호, pp. 229-242.
  3. Atkinson, J. H. and Sallfors, G. (1991), "Experimental detennination of soil properties", In Proceeding of the 10th European Conference on Soil Mechanics, Vol. 3, pp. 915-956.
  4. Attewell, P. B. (1977), "Ground movements caused by tunnelling in soil", Proceedings of International Conference on Large Movements and Structures, Geddes, J. D. (ed), London, pp. 812-948.
  5. Attewell, P. B., Yeates, J. and Selby, A. R. (1986), Soil movements induced by tunnelling and their effects on pipelines and structures, Blackie, London.
  6. Cording, E. J. (1991), "Design philosophies for tunnels in soil", Proceedings of International Conference on Underground structures Design and Instrumentation, pp. 56-79.
  7. Dyer, M. R., Hutchinson, M. T. and Evans, N. (1996), ''Sudden valley sewer: a case history", International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, Mair, R. J. and Taylor, R. N. (eds), London: Balkema, pp. 671-676.
  8. Lee, Y. J. and Bassett, R. H. (2006), "Application of a photogranunetric technique to a model tunnel", Tunnelling and Underground Space Technology, Vol. 21, Issue 1, pp. 79-96. https://doi.org/10.1016/j.tust.2005.06.005
  9. Mair, R. J., Taylor, R. N. & Bracegirdle, A. (1993), ''Subsurfuce settlement profiles above tunnels in clays", Getechnique, Vol. 43, No.2, pp. 315-320. https://doi.org/10.1680/geot.1993.43.2.315
  10. Moh, Z-C, Ju, D. H. and Hwang, R. N. (1996), "Ground movements around tunnels in soft ground", International Symposium on Geoteclmical Aspects of Underground Construction in Soft Ground, Mair, R. J. and Taylor, R. N. (eds), London: Balkema, pp. 725-730.
  11. O'Reilly, M. P. and New, B. M. (1982), "Settlements above tunnels in the United Kingdom-theirmagnitudeandprediction", Tunnelling '82, London: IMM, pp. 173-181.
  12. Potts, D. M. (1976), Behaviour of lined and unlined tunnels in sand. PhD thesis, University of Cambridge.
  13. Rankin, W. J. (1988), "Ground movements resulting from urban tunnelling; predictions and effects", Engineering Goology of Underground Movement, Geological Society, Engineering Geology Special Publication, No.5, pp. 79-92.