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ON THE FUNCTIONS OF BOUNDED k¢-VARIATIONS(T)

JAEKEUN PARK

ABstrACT. For some ¢-sequences ¢1, ¢2 and ¢3, and k-function k1, x2 and
K3 with nl_l(a:)ngl(:c) > ngl(x) for z > 0, the Luxemburg norm is lower
semi-continuous on k#BVy, and some specialized equivalent conditions are
considered.
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1. Introductions and preliminaries

In defining a function of bounded variation on the closed interval I b = [a,b]
we considered the supremum of Y | f(I,,) | for every collection {I,} of nonover-
lapping subintervals of I? such that I2 = |JI,, where I, = [zn,yn], f(In) =
flyn) = f(zn).

A function f is of bounded variation on I? if V2(f) = sup (Z | f(In) | ) is
finite, that is, if there exists a positive constant ¢ such that, for every collection
{I,} of subintervals of I® with I =JI,, Y. | f(In) |<c.

The introduction of the k-function x can be viewed as a rescaling of length
of subintervals in I® such that the length of I® is 1 if (1) = 1. From now on we
are requiring that x has the following properties on a closed interval 1L

(a) & is continuous with £(0) = 0 and (1) = 1,

(b) & is concave and strictly increasing, and

(¢) lim (s(z)/x) = o0.[1]

z—0t
Note that, for k-functions x,(¢ = 1,2, 3), the product x1x2 and the composite
K1 © ko are x-functions and
1 1 1 1
< <
k(z1) + K(z2) = Klz1 +22) ~ K(z1)  K(22)

(1)
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for x1, z2 > 0.

We shall say that x;(i = 1,2,3) satisfy the A,-condition (briefly x; € Ax(i =
1,2,3)) if k-functions k1, k2 and kg satisfy k7' (z)ky *(z) > &3 '(z) for > 0.[6]

Let ¢ = {¢,} be a sequences of convex functions such that ¢, : [0,00) —
[0,00), #n(0) = 0,¢n(z) > 0 for z > 0. We say that ¢ is a ¢-sequence if
ni1(x) < ¢n(x) for £ > 0 and 3 ¢n(x) = oo for all z > 0.[8] Note that, for
x1,%1 € Ig, ¢($1) + ¢(I2) < ¢(1‘1 + 372) and ¢_1(1'1 +£L‘2) < ¢_1($1) + ¢_1($2)

For ¢-sequences ¢ = {¢1,} and @2 = {¢an}, if there exist two positive
constants C' and T such that

¢1n(t) < ¢2n(Ct) (2)

for t > T and any n; we write ¢; < ¢, i.e., ¢2 dominate ¢1 near infinity. Here
if T =0 and ¢1 < ¢o, then ¢2 dominate ¢; globally.

If 1 < ¢2 and ¢ < ¢ hold simultaneously we shall say that ¢1,¢2 are
equivalent. Note that, for a ¢-sequence ¢ = {¢,}, the function ¢(t) = {¢n(t)}
and ¢ (t) = {d1(t)} = {¢Pn(kt)} for k > 0 are equivalent.

A ¢-sequence ¢ = {¢p,} is said to satisfy the Ay-condition(the Az-condition
globally) denoted ¢ € Ay (¢ € Ay globally) if, for z > xp > 0(xp = 0),

for any n and some absolute constant C, respectively.
For given I, in I?, for the simplicity of notations let I3 , = | I, |/| I} |.

For a s-function x and ¢-sequence ¢, a function f is said to be of bounded
variation, of bounded k-variation, of bounded ¢-variation and of bounded ro-
variation on I? if the total variation:

V() =V(fiab)=sup{ > (1 fI) D},

KV () = KV (f : a,8) = sup{ 30 F) 1)/ 3o w01 Boa D
Va(f) = V(S : a,b) =sup { 3 ¢l £(1) D},

WVp(f) = KV = a,b) = sup { 37 dnll F(I) 1)/ Y k(1 Ih -

are respectively finite, where I,, = [Tn, yn],| I, |= yn — Zn and I’ = I,. The
supremum may be taken either over all partitions of I? or over all collections of
nonoverlapping subintervals of 12[7,8,9].

We denote by BV, xBV, ¢BV and x¢BV the collection of all bounded,
bounded k-variation, bounded ¢-variation and bounded x¢-variation on I?, re-
spectively. Also denote by BVy, ¢ BV, and k¢ BV, the collection of all bounded,
bounded k-variation, bounded ¢-variation and bounded k¢-variation on I? and
f(a) = 0.(resp.).[3,4,5,6,8]



Bounded s¢-variation 489

Let

kBV* ={f|f isof bounded /{—variation},

¢BV* = { f1f isof bounded qS—variation},
K¢BV™ = {f | f isof bounded n¢-variation}[1,2,8].

The space k¢ BV is a Banach space with the norm | f(a) | + ||| f — f(a) |||

A function f is said to k¢-decreasing, s-decreasing and ¢-decreasing on I°
if there exists a positive constant C such that ¢,(] f(I) |) < Cx(] .0,
| FUI) | Ch(| I, |) and ¢n(] £(1) 1) < C(| I8, |) for any interval I C I?,
respectively.

Just as every decreasing function is of bounded variation, we have every &-
decreasing function is of bounded «-variation. If a function f is k¢-decreasing
on Ig, then f is of bounded k¢-variation and, for any a < zp < band a < yo < b,
f(z$) and f(y-) exist. If a function f is k¢-decreasing on I%, f is of bounded
K¢-variation. [2]

2. Some properties of the space k¢pBV

For any «-function x and ¢-sequence ¢ = {¢,}, the spaces ¢ BV, and k¢BV;
are linear over IZ, but BV} and k¢BV, are not, in general.

Theorem 1. For any k-function k and any ¢-sequence ¢ = {¢,}, $BV}, and
k¢BV are linear spaces over I° iff ¢ = {$n} € Ay globally.

Proof.  Firstly suppose that ¢ = {¢,} € Ay globally. There exists an n € N
such that r < 2" for nonnegative r. The monotonicity of ¢-sequences ¢ = {¢,}
together with the repeated use of the As-condition globally imply

on(1 £ | ) < 6 (271 £(T) 1) < K760l £(12) D),

which implies that if f € ¢BV™, then c¢f € ¢BV™ for any ¢ > 0.

Note that ¢ BV™ C ¢»BV™ if and only if there exists a constant C such that
$2n(t) < Chin(t). Here let d1n(t) = ¢n(t), dan(t) = dn(rt) and C = k. If
f € ¢BV™, then by ¢ = {¢,} € A, globally, we have

Y dnl2f(I) D < C S ¢l FIn) ) < o0,
which implies that 2f € ¢BV™*.
Since ¢ = {¢,} is a ¢-sequences, for f1, fo € p1BV* we have:
S on (102 £)E) 1) < 5 3 {onl 21D 1) + a1 260 D} < o0,

which implies that f; + f2 € ¢;BV™*, hence ¢BV* is a linear set.
Conversely suppose that BV ™ is a linear spaces. Then for f € ¢BV™* also
2f € ¢BV™ which means that BV* C ¢p2BV* with ¢y(t) = #(2t). Hence by
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the above mentioned note, it follows that there exists a positive constant C such
that ¢2(t) = ¢(2t) < Cé(t), i.e., ¢ = {¢dn} € Az globally.

By the simillar way as the above, we may be able to prove that k¢ BV is a
linear space over I if and only if ¢ = {¢,} € A, globally.

Let us consider kVy(cf) as a function of variable c. If ¢ = {¢,,} is a sequence
of increasing convex function, ¢,(0) = 0,z > 0, we have ¢,(cx) < cpn(z) for
0<c <1, and ¢p(cx) > chpn(x) for ¢ > 1. Let £V4(f) < oo andlet 0 < ¢ < 1.
Then Vg (cf) < ckVy(f) — 0 as ¢ — 0. With this in mind, we define norms as
follow [8]:

(a) For ferBVy, let ||| fll.=xV2(f),

() For fegBV, et | flll,=inffe>0|v(l) <1}, @
(c) For ferpBVy, let ||| f |[lp = inf{c >0 KV¢(£) <1}

Theorem 2. For a k-function & and ¢-sequences ¢; = {pin}(i = 1,2), then the
followings are equivalent;
(4) k¢1BVy C k¢2BVy;

(#)  d2n < d1n globally; (5)
(éit)  there exists a constant C such that

1 f gy < C IS g, -

Proof. Clearly that (i) is equivalent to (iii) is trivial.  If ¢2n < ¢1, globally,
then there exists a constant ¢ > 0 such that ¢2,(t) < ¢yn(ct) for any t > 0. Let
f € k¢1BVy. Then there exists a o > 0 such that af € k¢1BVy. By (4), we have

¢2(Z | (I} | ) = d1n(a | £(I) ) and, consequently

Lom(Z1/E)1) s el f1) )
SR, SR, 1)

that is, % f € Kk¢aBVy, which means that f € k¢2BV,, which implies that

k1 BVy C ko BV if ¢2,, < 1, globally.
Let us suppose that condition (4) is not satisfied. Then there exists a strictly
increasing sequence {#,}32.; such that 0 < t; <ty <tz <---, lim ¢, = co and
n—o0

dan(tn) > $1,(2"nty,), for any n € N. By the definition of ¢-sequences, we have:

< 00,

1 1
¢1n(ntn) = @P1in (272nntn) < 2_n¢1n(2nntn)a
which implies that

P2n(tn) > ¢1n(2"nty) > 2" P1n(nty).
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Let us choose a sequence of disjoint nonoverlapping subintervals I, in I2,
n € N such that

_ b—a ¢1n(t1) .

? — b — a. The function f defined by
ntp, fzxzel,,neN

fl@y=4 " T
0, otherwise in I

is an element of the k¢, BVy;

20w fTn) ) _ ¥ din(nta) |1 |
ZK(I Ig,a‘ l) B Z,"Q(l In, Z on d)ln tl | Ib |< 0.

On the other hand, f is not an element of the space k¢oBVy; for an arbitrary o

with 0 < & <1 we have that of € Kp2BV; because it suffices to show anm € N
such that & > L and we have

Z ‘15271(0‘ | f(In) |) Z ¢2n(antn) | I, |
SR D) an I

n) | In |

OOZ
; 2

S KT, )
Z 2"G1n(t1) | 12|
T

Consequently, condition (4) is necessary for the inclusion k¢ BVy C kg2BVg
and the theorem is proved.

Lemma 1. [4] For any k-function x and any ¢-sequence ¢ = {¢n,}, we have;
(@) wVo(F/IIfllleg) <1,

®) if e <1 then &Va(f) <[ £ . (6)
@ i M fllle21 then &Va(f) 21 f Il
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Proof. (a) Take k > ||| f . Then for any finite collection I = {I,}, we have;
e

S 6a(] (L) 1/%) f
S w1, ) <wVi(g) <1

Hence, by Fatou’s lemma we have:

( f ) {Zqﬁn(limk—#lllflﬂw|f(1n)/kl)}
KVs = sup

1S Mo PILREPR)

s lm {28 fUn)/E])
B pIcﬂ|l||f|||~¢{ (RN }<1

(b) For any finite collection I = {I,,}, since ||| f g < 1and gn(at) < agn(t)
| f(n) |

for a € I, letting & = ||| f |||, <1 and t = =—~—, then we have:

N M

2 on(l fTn) ) e 2 on(l FUn) 1 /IS 1llg)
2R al) ~ " 2R e l)

<SS MeprVe <W) S i e

(c) Since ||| f |[l.4 = 1and ¢n(Bt) > Bn(t) for 8> 1, letting 6 = || f |ll,.4—

and t = —MUL)I—— r sufficiently sma n
dt ”lf'”w‘f for sufficiently 11 ¢, the
2 ¢a(] f(In) 1) . 220l F( ) | /U f Nl —€))
Sr( R, = W ke =) SR 1)
zmumw—@macﬁﬁﬁgz)szmm—a

where the latter inequality follows from the definition of the Luxemburg norm.
Since € > 0 is arbitrary the assertion (c¢) is proved, which completes the proof.
O

Lemma 2. [3] If a function f is k¢-decreasing on I?, then for any a < o < b
and a <yo < b, f(z}) and f(yo_) emist.

Corollary 1. If a function f is k-decreasing, ¢-decreasing or r¢-decreasing
on I2, then f is of bounded k-variation, bounded ¢-variation or bounded Kep-
variation on I°, respectively.

Corollary 2. [3] If a function f is k¢-decreasing on I?, then
(i)  f is a continuous function on I%;
(it)  f is of bounded k¢-variation on I?.
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Proof. Let a <z < zo <y < b Then ¢1(| f(IZ,) |) < w(] 12, |/] 1 ]) and
o1(l F(IE) 1) < k(| 14, /] 18 |). Letting & — zo and y — @o, show ¢1(] f(z™) —
f(@o) 1) < 0 and ¢1(] f(z_) — f(zo) |) < 0. By the above lemma, f(zg) =

f(zo) = f(zo-), and by the definition of xk¢-decreasing function, f is of bounded
k¢-variation on I?.

Theorem 3. If a function f is k-decreasing or ¢-decreasing on I(ZL’ , then
(4) f is bounded on I?,
(i) f is of bounded k¢-variation on I2,
(i) <Va(f) < Vo(f) on It

Proof. If fis of bounded s-variation on I?, then there is a positive constant C
such that, for any I = {I,}, Y| f(I,) [KC Y w( 12, |).
If ¢ = {¢n} is a ¢-sequence, then for any M, there is a positive k such that
$1(k) = M and ¢, (z) < Mz for all z < k.
Now if f is of bounded s-variation on I%,, then f is bounded, i.e., | f(x) [<
M/2. So,
D nlfIn) <YM | f@) IS CMY w11, ),
Hence f is of bounded x¢-variation.
For any z, a < ¢ <b, consider {I,} = {I1, [} = {I%, I}, then
u(l f(IS) ) < FID D+ (U2 D)
SR (A R A E (AT

thus ¢1(] f(IT) ) < 2.Vs(f). Since ¢1(x) — 0o as x — oo, f is bounded.
If f is of bounded ¢-variation on I%, then there exists a positive constant M
such that, for any I = {I,,},

Dol fI) ) S M =Mr() <MY w(| 1, ]),

which implies that f is of bounded k¢-variation and .V, (f) < Vi(f).

) < kVs(f),

Lemma 3. For f € ¢ BV}, letting

1
15y = jnf ¢ {1 + 3 bl ] (1) |>} , (7
then
W<l <2015 1M,
that is, the norms |[[ - |||, and || - ||, are equivalent.

Proof. If we let k tend to || f ||, in Zgbn(% | F(I) | ) < 1, then we obtain, by

Fatou's lemma and (6) lemma 1, Z(f)n( | f(I) ] ) < 1, which implies
n

that ||| £l < Il f ll4-

1
71y
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f | | £ |
Let w = —L—. .
ot w = e Then sine o on (7T )

> ¢all w(ly) ) +1 < 2, which implies that || f |, < 2|I| f |||, Hence the

< 1, we have || w ||y <

n
assertion holds.

Theorem 4. (md)BVg, e HIW) is a normed linear spaces when equivalent func-
tions are identified. Moreover,

I fllleg <1 if and only if &Ve(f) < Il £ lllee
Proof. Since ¢, is increasing for each n, kVy(f/t2) < kVu(f/t1) if t1 <to.
Thus V5 (/111 £ lles) < 1, we have; {t | kV(£/t) < 1} = [lIl £ lllogr 00
Clearly ||| 0 [||.4 = 0
If f#0,let z € I’ be such that f(z) # 0, then, by V4(f) = ¢1(] F(I%) |), for
suitable I = {I,} we have;
f) e1(l fU/tD _ ¢l FI )/tl)
Vol=) = =
e (t B TP R (P
as ¢ — 0. Thus there is ¢t > 0 such that kV4{(f/t) > 1, which implies that

1S Hlieg # O
For ¢ # 0,

1 ef g = int {t > 0 kV(ef/t) <1}

=l int {s > 0| aVy(£/s) <1} =l |l £ Il

Now for f1, fa € K¢BV, let a; > (|| fi |l|.4:¢ = 1,2. Then 0 < a; < o0, and
let b = a1 + a2 > 0. Since fi + fa € kpBVy, ||| f1 + f2 |||,.4 < 0o. Consider

> (l(fl +f2)(1)|)
<S4, <ﬂ|f1(fn)|+a_2|f2(1n)|)

ay b as

Z¢<f1(f ) azz¢n(f2(1 )
szfcl ma |)-

Letting a; — ||| fi lll4:2=1,2. Then || fi + fa |l .4 < Il f1 g1 £2 M1l

For the last part, let a = [|| f |||,4, f € k¢BVo and a > 0, sincea = 0 is the
trivial case. Then by definition, f/a € k¢BVy. If a < 1, then

kVo(f) < kVy(f/a) <1 (8)

so that ||| cf |||, < 1 implies the left side of (8) is bounded by 1. On the

other hand, if f € k¢BVy then ||| f|fl, < 1 hold. Note that if @ > 1, then
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kVy(f/a) < 1but kVy(f) = oo is possible. Thus only 0 < a < 1 is relevant here,
which completes the proof.

Corollary 3. (k6BVa, Il £ llls ), (5BVo: Il £11L.)s and (6BVa, Il £ I1l,) are
respectively Banach space.

Proof. Let f and g he functions in k¢BVy such that ||| f — ¢ |l,, < e Then
f—g Il <1, so, by part (b) of the Lemma 1,

]Vo((F=g)/e) <IN F =gl < 1.
Now for x € I® and I = {I%, I%}, we have;

ar*tzx

z) - g(z Iz I3

(958 ) (12) ()=
that is, | f(z) — g(z) |< ed7(2).

Using this, we see that if {f,,} is a Cauchy sequence in this Luxemburg norm
Il |lcg> it is also a Cauchy sequence in the supremum norm, so that there
exists a function f such that f,, converges to f uniformly. Hence there exists an
ng = no(e) € N such that, for every n > ng and m > no, ||| fo — fon lllp < &

Since fr(a) = 0, we have f(a) = 0.

Let € > 0 be given and let] = {I,,} be a finite collection of nonoverlapping
subintervals of I?. Then, by Fatou’s lemma, we have:

Zm(u N I/e) = Z lim (| (fa = £)(Ti) 1/2)
= hm Z¢k( k) |/5> < Z“(| Ilc,a 1)

which means that kVy((f, — f)/e) < 1. Hence ||| fr — f |||< ¢ for sufficiently
large n and f € k¢pBW, ie., f, and f, — f € k¢BV, and, consequently, also
f=Ffo—{fn— f) € kpBV}, which implies that

tim || fu — f 11l = 0.

which completes the proof.

Theorem 5. If the functions f( | fl>a> O) and g are in KBV, on I8, then
the functwn and the product h = fg are in k¢pBVj.

Proof. For some positive constant ¢ the function cf is of bounded x¢-variation

for any closed interval I = {I,,} = {I{"_ }. Hence we have;

Z%Q— 1) = Lon (ca | 72— 1) < Tont est,

that is, the function ca?/f is in k¢pBV;', which implies that the function 1/f is
in kpBVj.
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To prove the second part, let the functions f(| f |> @ > 0) and g be in k¢ BVjy.
Then there are some positive constants c¢; and ¢z such that functions ¢; f and
c2g are of bounded k¢-variation and KV, (f) < 00, KVe(g) < co.

So, since ¢n(z) — 00 as T — oo, we have ¢1(] F(IY) |) < kVi(f) and (]

g(I¥) |) < kV,(g), that is, f and g are bounded.

Let a > ||| f |ll.4 andb>|}|g]”n¢ Then 0 < a < oo and 0 < b < oo, and
let k =a+b > 0 and ¢ = min{a, b}. For any closed interval I = {I,} = {I;"_, },

o on (1 U0 ) = e (5 | f(en)g(an) = f@a-1)g(@a) )
< Zm (5 1 #gn) | +7 | flznla(T) 1)

< Y on (3 1070) 1+ (1))
<Y on (7 10t 145 atr) )

< F S onlafI) )+ T (b0(L) ) <

which implies that £ fg is in k¢ BVy". Thus the product fg is in koBV).

Note that if ¢ < 1 and ||} fn — f ||l5 <€, then kVp(fn — f) <, that is, if
e <land ||| (fn = )/€ lllxy <1, then &Vs((fn — f)/e) < 1.

Since convergence in norm implies uniform convergence, the continuous func-
tions form a closed subset of k¢BVy and so k¢ BV, [ C is itself a Banach space.
Also note that k¢BV is a Banach space with norm |[| f [[[.4+ | f(a) | -

Theorem 6.  For a ¢-sequences ¢ = {¢,} and a k-function K, if p = {¢n} €
Az (globally), then kpBVy* = k¢pBVy and ¢BVy* = ¢BVy (resp.).

Proof. For a ¢-sequences ¢ = {¢n} and a s-function x, ¢BVp* C ¢BV;y and
k¢pBVy* C k¢ BV}, in general.

To show that ¢BVy™ D ¢BVp, let f € $BV; and ||| f |||, # 0. Then 3= én(]
FL) 1 /ANl < 1 implies g = f/Ill flll, € 6BW". If ¢ = {¢n} €
As(globally), then ¢BV," is a linear spaces, which implies that ||| f|||,g =
f € ¢BVy* and hence ¢BV, C ¢BV,*.

To show that kpBVy* D k¢BVj. let f € kpBVp and ||| f |||,4 # 0. Then

D onll ST /N Flles)/ Dom(l dn |/ <1 T2 1) <1

implies g = f/||| f |, € kpBV". If ¢ = {¢n} € Ao(globally), then k¢pBW*
is a linear spaces, which implies that ||| f||l,,9 = f € x¢BVy" and hence
k¢BVy C k¢pBVy™.
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By the simillar way as the above, also we have ¢BVy* = ¢BVp, which com-
pletes the proof.

Theorem 7. Let {f,} € k¢pBVy be a sequence such that f, converges to f
almost everywhere. with f € kpBVy, and ¢,(z) =0 iff t =0. Then

7 Mg < Tim inf{[] fr |[]cq0
that is, the Luzemburg norm is lower semi-continuous on k¢ BVj.

Proof. If f =0 a.e. on I?, the result is trivial. So we may assume that f # 0
a.e. on I2.

Thus ||| f 1|].4 > 0 so that ||| fa |||, > O for all sufficiently large n.
If ko = lim inf|[| f [[|.4 = oo, the result is again true. We may suppose

that 0 < kg < 0o. But kg implies that there exists a subsequence {f,,} such
that lim [[| fn, |[|,, = 0. Consequently from some iy, using the convexity of
11— 00

¢ = {dn}, we bhave; ||| fn, [|loy <1, 0> 10 and

_ | Fui(I) |
T Mg 2= 5D Zq&"(\\\fwnw) 2K
Hence

D bnll fui(T) )/ D6 15, D) < | fo

Since | fn, || f | a.e., by Fatou’s lemma and the fact that ¢,(z) > 0 for
z > 0 we have:

lep =0 as i— oo

S on( f(L) ) 2t ol fUIn) )
YR, Ys(h.)

< tim inf O in () )
100 Zﬂﬂ In,a |)
This is a contradiction, which implies that kg # 0, that is, 0 < kg < oco.
Finally let 0 < ko < t be arbitrary. Then kg < k; < t for some 7 so that

> énll ST /) _ 3 Jim gn(l f(In.) | /1)
Se( 15, ]) S (5, D)
lim inf - pn(l f(In) | /1)

0<

<
- De( T, D
tim inf > - én(] F(In,) | /Ri) o
S 11— 00 S 1.
(. D
But then the definition of ||| - |||, and (9) imply that ||| f [|[,., < ¢. Since ¢ > ko

is arbitrary, we get
W7 lleg < ko= lim inf[[| fo [ll.4,
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s0 that the Luxemburg norm ||| - [{|.4 is lower semi-continuous, which completes
the proof.
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