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ABSTRACT. Throughout this paper, we denote that R is a (right) near-ring
and G an R-group. We will derive some properties of substructures and
quotient substructures of R and G.
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1. Introduction

A (right) near-ring R is an algebraic system (R, +, -) with two binary opera-
tions + and - such that (R, +) is a group (not necessarily abelian) with neutral
element 0, (R, -) is a semigroup and (a + b)c = ac+ be for all a,b,cin R. If R
has a unity 1, then R is called unitary.

A (two sided) ideal of R is a subset I of R such that (i) (I, +) is a normal
subgroup of (R, +), (ii) a(/ +b)—abC I foralla, b€ R, (iii) I+a)b—abC I
for all a, b € R, equivalently, IR C I. If I satisfies (i) and (ii) then it is called a
left ideal of R. If I satisfies (i) and (iii) then it is called a right ideal of R.

We will use the following notations: Given a near-ring R, Ry ={a € R| a0 =
0} which is called the zero symmetric part of R, R. = {a € R | a0 = a} which is
called the constant part of R.

Obviously, we see that Ry and R, are subnear-rings of R. Thus a near-ring
R is called zero symmetric, in case R = Ry also, in case R = R, R is called
constant. From the Pierce decomposition theorem, we obtain that R = Ry @ R,
as additive groups. So every element a € R has a unique representation of the
form a = b+ ¢, where b € Ry and ¢ € R,.

Let (G, +) be a group (not necessarily abelian) and denote the set

M@G)={f|f:G— G}
of all the self maps of G.
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Let R and S be two near-rings. Then a mapping € from R to S is called a near-
ring homomorphism if (i) 8(a + b) = fa + 0b, (ii) 0(ab) = fabb. We can replace
homomorphism by monomorphism, epimorphism, isomorphism, endomorphism
and automorphism, if these terms have their usual meanings as in rings ([1]).

A group G is called an R-group if there exists a near-ring homomorphism

6:(R,+,-) — (M(G),+,).

Such a homomorphism 8 is called a representation of R on G, we write that
rz (left scalar multiplication by R) instead of (fr)x for all r € R and = € G.
If R is unitary and #1 = 1, then R-group G is called unitary. That is, an
R-group is an additive group G with a left scalar multiplication satisfying (i)
(a+b)z = ax+bz, (ii) (ab)z = a(bz), foralla, b€ Rand z € G and (iii) 1z =z
(if R has a unity 1).

A representation 6 of R on G is called faithful if Ker = {0}, that is, re =0
implies that r = 0. In this case, also we say that G is a faithful R-group or R
acts faithfully on G.

For the remainder concepts and results on near-rings, we refer to [5] and [6].

2. Some properties of quotient substructures in R-groups

Let R be a near-ring and let G be an R-group. If there exists « in G such

that G = Rz, that is,

G={rz|r€R},
then G is called a monogenic R-group and the element z is called a generator
of G.

We say that a near-ring R has the insertion of factors property (briefly, IFP)
provided that for all a, b,z in R with ab = 0 implies azb = 0.

For an R-group G, a non-empty subset X of G such that RX C X is called an
R-subset of G, a subgroup T of G such that RT C T is called an R-subgroup of
G, a normal subgroup N of G such that RN C N is called a normal R-subgroup
of G and an R-ideal of G is a normal subgroup N of G such that

alN+z)—ax CN

for all z € G, a € R. Note that every R-ideal of R is a left ideal of R, here, R
is considered as an R-group.

Now, we consider the following quotient substructures of R and G, also rela-
tions between them.

Let G be an R-group and X and Y be non-empty subsets of G. We can define
the following.

(X:Y):={a€R|aX CY}
We abbreviate that for z € G, ({z} : Y) =: (z : Y). Similarly for (Y : z).

(X : 0) is called the annihilator of X, denoted it by Ann(X). We note that
G is a faithful R-group if (G : o) = {0}, that is, Ann(G) = {0}.
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Also, a subgroup H of G such that za € H for all z € H,a € R, is an
R-subgroup of GG, and an R-ideal of G is a normal subgroup N of G such that

(x+gla—gaeN

forall g € G,z € N and a € R ([5)]).

In the above notation, note that if Y is a subgroup (normal subgroup, R-
subgroup, ideal) of G, then sois (X : Y) in R as an R-group. Moreover, we have
the following simple statements.

Theorem 2.1. Let G be an R-group and K| and Ky non-empty subsets of G.
Then we have the following conditions:
(1) If K2 is a normal R-subgroup of G, then (K1 : K3) is a normal left
R-subgroup of R.
(2) If K1 is a R-subset of G and K, is an R-subgroup of G, then (K1 : K>)
15 a two-sided R-subgroup of R..
(3) If K1 is an R-subset of G and K3 is an R-ideal of G, then (K1 : K>) is
a two-sided ideal of R.

Proof. (1) and (2) are easily proved by simple calculation.
Now, we prove only (3) : Using the condition (1), (K; : K2) is a normal
subgroup of R. Let a € (K; : K») and r € R. Then

(ar)K; = a(rK;) C aK; C Ko,
because K is an R-subset of G, so that ar € (K; : K3). Whence (K : K;) is a

right ideal of R.
Next, let 71,70 € R and a € (K : K3). Then

{rila+r2) ~ riro}k = ri(ak + rak)ra — rirok € Ko

for all k € K7, since aK; C K5 and K3 is an ideal of G. Thus (K7 : K3} is a left
ideal of R. Therefore (K : K>) is a two-sided ideal of R.

Corollary 2.2. Let R be a near-ring and G an R-group.
(1) ([5]) For any z € G, Ann(z) is a left ideal of R.
(2) ([5]) For any R-subgroup K of G, Ann(K) is a two-sided ideal of R.
(3) For any R-subset K of G, Ann(K) is a two-sided ideal of R.
(4) For any non-empty subset K of G, Ann(K) = (¢ Ann(z).

Lemma 2.3. [6]

(1) Let I be a two-sided ideal of a near-ring R. Then the canonical map
7 : R — R/I defined by a ~ a+ I is a near-ring epimorphism. So R/I
s a homomorphic image of R, and kerm = I.

(2) Let the map ¢ : R — S be a near-ring epimorphism. Then ker¢ is a
two-sided ideal of R and R/ker¢ = S.
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Theorem 2.4. Let R be a near-ring and G an R-group. Then we have the
following conditions:

(1) Ann(G) is a two-sided ideal of R. Moreover G is a faithful R/Ann(G)-
group.
(2) For any z € G, we get Rx = R/Ann(z) as R-groups.

Proof. (1) By Corollary 2.2 and Theorem 2.1, Ann(G) is a two-sided ideal of R.

We now make G an R/Ann(G)-group by defining, for allr € R and r +
Ann(G) € R/Ann(G), the action (r + Ann(G))z = rz. If r + Ann(G) = ' +
Ann(G), then —r' +r € Ann(G) hence (—r’' +r)z = o for all z in G, that is to
say, rxz = r’z. This tells us that

(r+ Ann(G))z = rz = r'z = (r' + Ann(G))z;

thus the action of R/Ann(G) on G has been shown to be well defined.

The verification of the structure of an R/Ann(G)-group is a routine triv-
iality. Finally, to see that G is a faithful R/Ann(G)-group, we note that if
(r+ Ann(G))z = 0 for all z € G, then by the definition of R/Ann(G)-group
structure, we have rz = 0. Hence r € Ann(G). This says that only the zero ele-
ment of R/Ann(G) annihilates all of G. Thus G is a faithful R/Ann(G)-group.

(2) For any z € G, clearly Rz is an R-subgroup of G. The map ¢ : R — Rx
defined by ¢(r) = rz is an R-epimorphism, so that from the homomorphism
theorems Lemma 2.3, since the kernel of ¢ is Ann(z), we deduce that Rz &
R/Ann(z) as R-groups.

Corollary 2.5. Let G be a monogenic R-group with x as a generator. Then we
have the isomorphic relation as G = R/Ann(x).

Theorem 2.6. If R is a near-ring and G an R-group, then R/Ann(G) is em-
bedded in a near-ring M(G).

Proof. Let a € R. We define 7, : G — G by 7,z = ax for each x € G. Then 7,
is in M(G). Consider the mapping ¢ : R — M(G) defined by ¢(a) = 7,. Then
obviously, we see that

¢(a+b) = ¢(a) + ¢(b) and ¢(ab) = ¢(a)¢(b),
that is, ¢ is a near-ring homomorphism from R to M(G).

Next, we must show that Ker¢ = Ann(G) : Indeed, if a € Kerg, then
7o = O (zero map), which implies that aG = G7, = o, that is, a € Ann(G). On
the other hand, if a € Ann(G), then by the definition of Ann(G), aG = o hence
O = 7, = ¢{a), this implies that a € Ker¢. Therefore from the homomorphism
theorems Lemma 2.3 on R~ groups, the image of R is a near-ring isomorphic

to R/Ann(G). Consequently, R/Ann(G) is isomorphic to a subnear-ring of
M(G).

From Theorem 2.1, and Corollary 2.2, we have the following important con-
ditions.
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Theorem 2.7. Let R be a near-ring. Then the following conditions are equiv-
alent:

(1} R has the IFP.
(2) For any a € R, Ann(a) is an ideal of R.
(3) For any non-empty subset S of R, Ann(S) is an ideal of R.

Proof. (1) = (2). Let € Ann(a). Then za = 0, by definition. Since R has the
IFP, zra = 0 for each r € R, that is, zr € Ann(a). Hence Ann(a) is a right
ideal of R. On the other hand, by Corollary 2.2 (1), Ann(a) is a left ideal of R.
Consequently, Ann(a) is an ideal of R.

(2) = (3). Assume the condition (2). Then because of Ann(a) is an ideal of
R, for any a € R, and by Corollary 2.2 (4), Ann(S) = ,cg Ann(a), obviously,
Ann(S) is an ideal of R.

(3) = (1). Suppose that the condition (3) is true, and ab = 0 for a, b in R.
Then we see that a € Ann(b). From the condition (3), Ann(b) is an ideal of R,
so that ax € Ann(b), for any x € R. That is azb = 0, for any z € R. Therefore
R has the IFP.
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