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A SPECTRALLY ARBITRARY COMPLEX SIGN PATTERN

SUJUAN LIU*, YINGJIE LEI AND YUBIN GAO

ABSTRACT. A spectrally arbitrary complex sign pattern A is a complex
sign pattern of order n such that for every monic nth degree polynomial
f(z) with coefficients from C, there is a matrix in the qualitative class
of A having the characteristic polynomial f(z). In this paper, we show
a necessary condition for a spectrally arbitrary complex sign pattern and
introduce a minimal spectrally arbitrary complex sign pattern A, all of
whose superpatterns are also spectrally arbitrary for n > 2. Furthermore,
we study the minimum number of nonzero parts in a spectrally arbitrary
complex sign pattern.
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1. Introduction

The sign of a real number a, denoted by sgn(a), is defined to be 1, -1 or 0,
according to @ > 0,a < 0 or a = 0. A real sign pattern matrix is a matrix whose
entries are from the set {1, —1,0}. The sign pattern of a real matrix B, denoted
by sgn(B), is the (1, —1,0)-matrix obtained from B by replacing each entry by
its sign. For a real sign pattern A of order n, the set of all real matrices with
the same sign pattern as A is called the qualitative class of A, and is denoted
by Q(A). A real sign pattern B = [b;;] is a superpattern of a real sign pattern
A = [a;g]ifb;r, = aji whenevera;i # 0. And A is a subpattern of B if B is a
superpattern of A.

The sign of a complex number z, denoted by csgn(z), is defined as csgn(z) =
sgn(a)+i- sgn(b) (if z = a+i-b and a, b are real numbers). A complex sign pattern
matrix A is a matrix A = A; +¢- Ao, where A1 and A, are real sign patterns. The
sign pattern of a complex matrix A, denoted by csgn{A), is the matrix obtained
from A by replacing each entry by its sign. Namely, csgnd = sgnA; + i-sgnA;
(if A= Ay +1i- Ay, Ay and A- are real matrices). The qualitative class of the
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complex sign pattern A, denoted by Q,(A), is similarly defined as the following:
Qs(A) = {B| csgn (B) = A}.

A complex sign pattern B = By + 1 - By is a superpattern of a complex sign
pattern A = A; +i- Ay if the real sign patterns By and Bs are superpatterns of
Ay and As, respectively. The complex sign pattern A is called a subpattern of B,
if Bis a superpattern of A. Note that each complex sign pattern is a superpattern
and a subpattern of itself. The complex sign pattern A = A; +1- Ag is a proper
subpattern of B = By + 1 - B, if A is a subpattern of Band A # B. If, for
any given monic nth degree polynomial g(x) with coefficients from C, there is-a
complex matrix in Qs(A) having the characteristic polynomial g(z), then A is a
spectrally arbitrary complex sign pattern. A complex sign pattern A is minimal
spectrally arbitrary if A is spectrally arbitrary and any proper subpattern of A
is not spectrally arbitrary. A complex sign pattern A of order n is potentially
nilpotent (or allows nilpotence)if there exists a complex matrix B € Q,(A) with
the characteristic polynomial z”. Note that each spectrally arbitrary complex
sign pattern must allow nilpotence.

A digraph is a directed graph. A walk in a digraph of length £ is a sequence
V1, V2, ... Ug41 of vertices such that there is an arc in the digraph from v; tov;41
for j = 1,2,+--, k. The walk is closed if vg.r; = v, and cycle is a closed walk
in which v1,vs, ... v are distinet. A two-colored digraph D is a digraph whose
arcs are colored red and blue. The two-colored digraph allows loops and both a
red arc and a blue arc from j to k for all pairs (j, k) of vertices.

For an n x n complex matrix B, the characteristic polynomial of B is Pg(z) =
™ - ()\11(3) +1- /\21(3))‘7}"“1 4+ (-1}72‘-1()\1”_1(3) +i- )\gn_l(B)):E +
(=1 (Mn{B) + i - A2n(B)) ,where A1x(B) + 1 - Aox(B) is the sum of the k x k
principal minors and \;,(B) is a real number for ¥ = 1,2,---,n and j = 1,2.
A complex sign pattern A is \ji-sign-arbitrary if there exist matrices A4, Ao
and A_ € Qs(A) such that A\jp(A4) > 0, Ajx(Ao) = 0 and Ajp(A-) < 0. For a
spectrally arbitrary complex sign pattern A of order n, it is necessary that A be
Aji-sign-arbitrary for allk =1,2,--- ‘nand j=1,2.

2.Necessary condition for a spectrally arbitrary complex sign pattern

Graph theoretical methods are usefull in the study of spectrally arbitrary
complex sign pattern. In this section, we study the spectrally arbitrary complex
sign patterns using two-colored digraph.

Let A= A; +1i- Az be an order n complex sign pattern with 4; = [a;x] and
Ay = [bjz]. The associated two-colored digraph of A, denoted by D(4), is a
two-colored digraph with n vertices which has a red arc from j to k if and only
if a;x # 0 and a blue arc from j to k if and only if bj, £ O for j, k=1,2,--+ ,n.
The associated signed two-colored digraph S(A) of A is obtained from D(A) by
assigning the-sign a;j and bjx to the red arc(j, k) and the blue arc(j, k) in D(A),
respectively. Here, we establish a map ® from the set of all complex sign pattern
matrices of order n, denoted by C),, to the set of all signed two-colored digraph
with n vertices, denoted by S, :
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. C, — S5,
A — S(A4).

Obviously, ® is a isomorphic map and the sets C,, and S,, are isomorphic equiv-
alent. In a two-colored digraph D, a simple cycle of length k (or simple k-cycle
) is a sequence vy, vg, . .. , v; of distinct vertices such that there is a red arc or a
blue arc in D from v; to v;41 for j = 1,2, ...,k with vi4; = v;. A composite k-
cycle consists of some simple cycles whose total length is k and whose index sets
are mutually disjoint. A cycle (simple or composite ) in D(A) just corresponds
to a nonzero term in the determinant expansion of the principal submatrix of A
associated with the indices of the cycle. The sign of a cycle in a signed digraph
is the product of the signs of the arcs of the cycle.

Theorem 2.1 If a complex sign pattern A of order n is spectrally arbitrary,
then the associated signed two-colored digraph S(A) of A has at least two k-
cycles with even blue arcs and opposite signs and two k-cycles with odd blue arcs
and opposite signs fork=1,2,--- ,n.

Proof. Since A is a spectrally arbitrary complex sign pattern, A satisfies A;x(A)-
sign-arbitrary for j = 1,2and k = 1,2, - - , n. A1 (A)-sign-arbitrary implies that
there are at least two real nonzero terms with opposite signs for k = 1,2,--- , n.
The two nonzero terms correspond to two k-cycles with even blue arcs and
opposite signs in S(A). Similarly, A2x(A)-sign-arbitrary implies that there exist
at least two nonzero imaginary terms with reverse signs corresponding to two
k-cycles with odd blue arcs and opposite signs in S(A). The results hold.

Corollary 2.2 For any spectrally arbitrary complex sign pattern A, the associ-
ated two-colored digraph D{A) of A has at least four k-cycles fork =1,2,--- ,n.

From the necessary condition of the theorem 2.1, we can easily verify that
some complex sign patterns which don't satisfy the condition are not spectrally
arbitrary.

3. A minimal spectrally arbitrary complex sign pattern

In 1] J.J. McDonald described a method for establishing that a ray pattern
and all of its superpatterns are spectrally arbitrary. The method using the
Implicit Function Theorem can be easily extended to complex sign patterns.
The following Lemma shows the method for complex sign patterns.

Lemma 3.1 Suppose A = A; +1i- A be a complex sign pattern of order n and
Ay = [ajx] and Ay = [bji] be real sign patterns. The number of the nonzero
entries of A1 and A, s at least 2n.

1. Find a nilpotent matriz in Q(A).

2. Change 2n of the nonzero entries in Ay and As (denoted r1,72,...,72,)
in this nilpotent matriz to variables t1,to,. .., toy.
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3. Ezxpress the characteristic polynomial of the resulting matriz as :
" — (fl(tl, .. ,tgn) +1- 91(t1, .. ,tgn))x"_l + o4 (-—1)n_l(fn_1(t1, R 7t2n)

+i - gn—l(th ... ,tgn))l‘ —+ (—l)n(fn(tl, . ,tzn) +1- gn(tla - 7t2n))-

4. Find the Jacobi matriz J = 3_59%’151;""._7@1%)‘
9. If the determinant of J, evaluated at (t1,ta,... ,tan) = (r1,79,... ,T2n) is

nonzero, then every superpattern of A is spectrally arbitrary.

Let n be a positive integer with n > 2 and let

1437 -1
T+1 -1
A, = : (3.1).
1+: -1
T —1—1 nxn
It is easy to check that the associated signed two-colored digraph S(Ap) of
Ay, satisfies the necessary condition in Theorem 2.1. By performing suitable
similarities via positive diagonal matrices, we may assume that B,, € Qs(4,)
has the following form :

al +Zb1 -1
a2+i-b2 -1
B, = : (3.2),
An—1 + 7- bn—l -1
i-bn —an—t-ao J
where a; and by, are positive real numbers for j = 0,1,---,nand k=1,2,--- ,n.

We first give a definition and a result on the zeros of nonzero real polynomials
(of finite degree ). If f(¢) is a nonzero real polynomial, we set

Zy ={ac R| f(a) = 0}.

If Zy is nonempty, the maximum of Z; is denoted by max(Z;). If Z; is empty,
we define max(Zy) = —oo.
For convenience, the degree of a polynomial f(t) is denoted by d(f).

Lemma 3.2 Let f;(t) and g;(t) be nonzero real polynomials for j =1,2,--- ,n.
Suppose f;(t) and g;(t) satisfy the following conditions :
(1) £5(t) = tfj-1(t) — gj—1(t), 9;(t) = tg;—1(t) + fi—1(t) for j = 2,3, ,n;
(2) f1(t) and g.(t) have positive leading coefficients;
(3) Zy, is nonempty and max(Z;,) > 0;
(4) ma‘X(Zgl) < ma‘X(Zfl);
(8) 0(g1) < 8(f1)-
Then max(Zy,) < max(Zy,) < --- < max(Zy, ), Zy, is nonempty and max(Zg,)
<max(Zy,) forj=1,2,---  n.
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Proof. Suppose ty, = max(Zy,). Since max(Z, ) < max(Zy,) and since the
leading coefficient of g1(t) is positive, we have g;(ts,) > 0. Thus,

fQ(tf1) = tflfl(tfl) - gl(tﬁ) = —gl<tf1) < 0.

Since the leading coefficient of f1(t) is positive and 9(g1) < 9(f1), fa(t) =
tfi(t) — g1(t) has positive leading coefficient. Therefore, there exists a real
number ¢’ with ¢ > t; such that fo(t') > 0. From the Intermediate Value
Theorem, there exists a real number a with tf, < a < # such that fo(a) =
0. Namely, Zy, is nonempty and max(Zy,) < max(Zs,). Since the leading
coefficients of f1(t) and g,(t) are positive and max(Z,, ) < max(Zy,), it follows
that go(t) = tg1(t) + fi(t) > 0 for any real number ¢t > max(Z;,) > 0. Then
max(Zg,) < max(Zy, ) < max(Zy,). If n = 2, then the results hold. If n > 2, it
is obvious that fz and gy have positive leading coefficients and 9(gs) < 8(f2). So
f2 and g2 have all the conditions of f; and gi, respectively. Thus, by repeating
the above proof, we have that max(Zy,) < max(Zy,) < -+ < max(Zs,), Zy, is
nonempty and max(Z,;) < max(Zy,) for j =1,2,---,n. The results hold. O

Theorem 3.3 For each n > 2, the complex sign pattern A, having the form

(8.1) is minimal spectrally arbitrary and all of its superpatterns are spectrally
arbitrary.

Proof. Let B, € Qs(Ay) be of the form (3.2). For convenience, we set ap = 1
and a, =t. The characteristic polynomial of B, is

Pp, (2) = 5" = (fi+i-g0)a" 44 (= 1) (fact - g )+ (=) (f +ivg0)

where

i = a—t

g1 = bi—1,

fi = ¢—tea+b,02<j<n-1),

9 = bj—thj_1—a;_1 (255 <n),

fn = —tan_1+b,1.
In order to show that there exists a nilpotent matrix in Qs(A4,), it is sufficient to
determine the existence of positive numbers a1, -, an_1,t, by, -+, by, satisfying

the following equations (obtained by setting fis and gs to be zero for all j =
1,2, n)

a, = t,

bl = 1,

aj = taj_1—bj1 (2<j<n-1),
by = thj_14+a;-1 (2<j<n),

0 = tan_l - bn—1~

Let h(t) = tan,_1 —bp_1. Consider ai, b1, -+ ,an_1,bn_1, h(t) and b, as the func-
tions of ¢. It is easy to verify that the real polynomials ay, by, - - , @p_1, bn_1, h{t)
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and b, satisfy all the conditions in Lemma 3.2. Therefore, the Lemma 3.2 im-
plies that 0 = max(Z,,) < --- < max(Z,,_,) < max(Z), Z, is nonempty
and max(Zy,) < max(Z) for j = 1,2,---n. Suppose t, = max(Zp). Since
ai, -+ ,ap-1,b1, - -bp_1 and b, have positive leading coefficients and since ¢; >
max(Z,,) and t, > max(Zy, ), it follows that a;(tp) >0 for j = 1,2,--- ,n— 1,
and bi(tn) > 0 for k = 1,2,---n. Therefore, there exists a nilpotent matrix
having the form (3.2) in Q,(A,) where a; = a;(ts),b; = b;j(tn) bp = bn(tn) and
an =ty are positive real numbers for j =1,2,---,n— 1.
Consider the Jacobian matrix J given by

J = 9U1g1.:.fn0n)
B(a1,b1s1an,bn)
1 0 0 0 0 -1 0
0 1 0 0 o0 0 0 0
—ay, 1 1 0 0 0 —aq 0
-1 —-a, 0 1 0 0 - 0
= 0 0 -a, 1 1 0 —ay 0 (3.3)
0 0 0 0 0 -+ 1 —by,2 O
0 0 0 0 0 .- 1 —an-1 O
0 0 0 0 0 - —-ap —-bp1 1
Adding the first column to the (2rn—1)th column, the (2n—1)th column of the
resulting matrix is (0,0, —2a1, —2by, —ag, —ba, -+ , —@n-1, —bn_1)7, by a1 = a,

and b; = 1. Adding (k + 1)a; multiples of the (2k + 1)th column and (k + 1)bs
multiples of the (2k+2)th column to the (2n—1)th column for k = 1,2, -+ ,n—2,
the (2n — 1)th column of the resulting matrix is (0,---,0, —na,_1, —nbp_1)7,
by aj = ApQj—1 — bj_l and bj = anbj_l + a1 for i =2,---,n—1. Thus,
det(J) = —na,-1 which is nonzero when a,_; = a,_1(t;). From Lemma 3.1,
every superpattern of A, is spectrally arbitrary.

If one of the nonzero entries in column 2,3, - - - ,n—1 of A,, is replaced by zero,
each matrix in Q,(A,) is necessarily singular, a contradiction. If the (n — 1,n)
entry of A, is changed to zero, then every matrix in Qs(A,) is nonsingular, a
contradiction. If the (4,1) entry of A, isreplaced byior1forj=1,2,---,n—1,
then A, is not A;j41-sign-arbitrary or Agj-sign-arbitrary. If the (n,1) entry of 4,
is changed to zero, then A, is not Sz,-sign-arbitrary. If the (n, n) entry of A4, is
changed to —i or —1, then A, is not \;-sign-arbitrary or Ao;-sign-arbitrary. If
more than one nonzero real or complex parts are replaced by zeros, contradiction
can be easily found. Therefore, A, is a minimal spectrally arbitrary complex
sign pattern for n > 2. ad

In [1], the authors prove that any 2 x2 ray patterns are not spectrally arbitrary.
Here, from theorem 3.3, we know that there exist 2 x 2 spectrally arbitrary
complex sign patterns.

4. The minimum number of nonzero parts in a spectrally arbitrary
complex sign pattern
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For any digraph D, let G(D) denote the underlying multigraph of D, i.e.,
the graph obtained from D by ignoring the direction of each arc. The following
Lemma is well known in the cases of real sign patterns and ray patterns. Here,
we extend it to complex sign patterns.

Lemma 4.1 Let A = Ay 4+ i - Ay be an n x n irreducible complex sign pattern
and let B € Qs(A). If T is a subdigraph of the associated two-colored digraph
D(A) of A such that |T| =n—1 and G(D(T)) is a tree, then A has a realization
that is positive diagonally similar to B such that each real and complex part
corresponding to an arc in T has magnitude 1.

A set S C R is algebraically independent if, for all s1, s2,- -+ ,s, € S and each
nonzero polynomial P(xy, 3, - -, z,) with rational coefficients, P(s1, $2, -+, 8n)
# 0. Let Q(S) denote the extension field of S over @, the field of rational num-
bers. Let the transcendental degree of S be

tr.d.S = Sup{|T|: T C S, Tis algebraically independent } (see[5]}.

Theorem 4.2 Forn > 2, an n x n wrreducible spectrally arbitrary complex sign
pattern has at least 3n—1 nonzero real and complex parts. Namely, the associated
two-colored digraph has at least 3n — 1 arcs.

Proof. Let A be an n x n irreducible spectrally arbitrary complex sign pattern
with m nonzero real and complex parts. Chooseaset V = {a1, 81, -, 0, 8} C
R that tr.d.V = 2n. By Lemma 4.1, A has a realization B = [a;i] + 1 - [b;x] with
characteristic polynomial

Pp(w) = 2" —(on+-81)2" " o4 (=) (o1 +i-Fam1 )2+ (1) (o +i )

and n — 1 real and complex parts with magnitude 1. Since «; and 3; are
polynomials in the real and complex parts of B for 1 < j < n, it follows that

Q({alaﬁla o 7anaﬁn}) g Q({ajk7bjk 01 S .]7k S n})

Then 2n = tr.d.Q({a1, B, -, an, Bn}) < tr.d.Q({ajr,bjr:1<j,k<n}) <
m—(n—1).
Thus m > 3n — 1.

In [5], the authors have proved that every irreducible spectrally arbitrary real
sign pattern of order n has at least 2n — 1 nonzero entries. In [1], it is shown
that every n x n irreducible spectrally arbitrary ray pattern must have at least
3n — 1 nonzero entries. And a well known conjecture in [5] is that for n > 2,
an n X n real sign pattern that is spectrally arbitrary has at least 2n nonzero
entries. Here, we extend the conjecture to complex sign patterns.

Conjecture 4.3 Forn > 2, an n x n spectrally arbitrary complex sign pattern
has at least 2n nonzero entries and at least 3n nonzero real and complex parts.
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The minimal spectrally arbitrary complex sign pattern A, having the form
(3.1) has 2n nonzero entries and 3n nonzero real and complex parts. Namely,
Ay, verifies the conjecture 4.3 for n > 2.
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