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ANALYSIS OF THE DISCRETE-TIME GI/G/1/K USING THE
REMAINING TIME APPROACH/'
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ABSTRACT. The finite buffer GI/G/1/K system is set up by using an un-
conventional arrangement of the state space, in which the remaining inter-
arrival time or service time is chosen as the level. The stationary distribu-
tions of resulting Markov chain can be explicitly determined, and the chain
is positive recurrent without any restriction. This is an advantage of this
method, compared with that using the elapsed time approach [2].
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1. Introduction

Finite buffer queues are very important models in computer and communica-
tions systems, and most of the finite buffer queueing models used in practice are
special cases of the GI/G/1/K, e.g. GI/Geo/1/K, PH/PH/1/K, etc. Most of
the methods for the finite buffer queues, involving direct and iterative methods
have their pitfalls. For example, the GTH method, which has finite number of
steps, involves determining the inverse of very large matrices; and the iterative
methods, e.g. Gauss-Seidel method, GMRES method, the number of iterations
before convergence are not predictable.

Matrix-analytic method (MAM) is, in general, a semi-explicit based method
for analyzing a class of Markov chains with infinite levels (see Neuts [5, 7]).
However, when dealing with finite buffer queues researchers do not fully explore
the use of the MAM. The exceptions are the work of Hajek [4] and Naumov
[6]. Both fully used MAM to solve the finite buffer problems in traditional
manner. But the methods therein still did not exploit the full structure of the
queueing systems. Alfa [2] took a different approach using MAM to exploit the
full structure of the GI/G/1/K system. With a novel arrangement of the state
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space to represent the arrival process or the service process for the GI/G/1/K as
an elapsed time Markov-based distributions, Alfa [2] derived a level-dependent
Markov chain, from which the stationary distributions are explicitly determined.
The resulting Markov chain is positive recurrent conditionally.

The purpose of this paper is to represent the arrival process or the service
process for the GI/G/1/K using the remaining time approach. The resulting
Markov chain is a special case of M/G/1 type, and the stationary distributions
can be explicitly determined. Further it is proved to be positive recurrent with-
out any restriction.

2. Preliminaries

Discrete phase (PH) type distribution and the stability condition for the
M/G/1-type Markov chain are very vital in advancing the ideas in this paper.
We first briefly introduce the PH distribution. For a comprehensive exposition
we refer to {5, 7].

Consider an n+1 state absorbing Markov chain, with states 0, 1, 2, ..., n, where
the zeroth state is the absorbing state. Let the transition probability matrix of
this Markov chain be

1 0
EX

The matrix T is an n X n transition matrix representing transition within the
transient states, and it is substochastic with 0 < T;; < 1, with the sum of one
row of T being strictly less than 1. The column vector T° = 1 — T1, where
1 is a column vector of ones with appropriate size. Let @ = [a1, 02,...,a4)
with a; being the probability that the Markov chain starts in state . We have
ap +al = 1. For most cases of interest to us, we usually have g = 0. Let py
be the probability that the time to absorption is k, then

pr =aT* 'T° k>1and po = .

The time to absorption in such a Markov chain is said to have a phase type
distribution (e, T"). When n < oo, we call it a PH type distribution and when
n = oo we say it an IPH distribution.

Consider a single server queue in discrete time with general interarrival times
and general service times. We observe this system at equally spaced time epochs
sequentially numbered 0,1,2;...., and assume that observations are carried out
only at the beginning of an epoch. Hence all events that occur between epochs
n and n + 1 are assumed to occur at epoch n+ 1,n = 0,1,2,... The basic
assumptions are as follows:

¢ Interarrival times .4, of the customers are 1.i.d. with distribution

aj=Pr{A=i},1<j<n<ocowith a=][ay,az,...,a,), and a~' = E[A],

where for a random variable X, E[X] is the expectation of the random variable
X.
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o Service times, S, of the customers are i.i.d. with distribution
bj=Pr{S=1i},1<j<m<oowith b=[b,by,...,bn), and b~! = E[S].

It was shown in [1] that both the arrival and service processes can be repre-
sented by special cases of discrete time IPH distributions based on the remaining
times or elapsed times. In what follows, let the arrival process be represented by
the phase type distribution (e, T), and service times by (8,S5) in terms of the
remaining times, where

a=a, T;;.1=1 2<i<n and T;;=0,j#i-1;
B=b, Sii1=1 2<i<m and S;,;=0,j#i—1

Throughout this paper, we denote by 0, and 1,, the column vectors of ze-
ros and ones, respectively, of order n{(If no confusion occurs, we will drop the
subindex). Let A’ denote the transpose of the matrix A.

3. Method I

Alfa [2] set up the finite buffer GI/G/1/K system by using an unconventional
state space arrangement, i.e., by choosing the elapsed times of arrival or service
as the level. The transition matrix associated with the Markov chain has a nice
structure and is a special case of G/M/1 type.

In the following, we use the remaining times of arrival as the level to interpret
the GI/G/1/K system as a special case of M/G/1 type. At time t(t > 0), let N;
be the remaining interarrival time, L; be the number of customers in the system
and J; be the phase of the service time. Consider the state space

A:{(Nt,O)U(Nt,Lt,Jt),Nt:1,2,...,n;Lt:1,2,...,K;Jt:1,2,...,m}.

We also let (N;, Ly, Ji)|ioo = (N, L,J). In what follows, we refer to level
it > 1) as the set {((4,0)U (4, L,J),L =1,2,...,K;J = 1,2,...,m}, and the
second and third variables as the sub-levels.

This is indeed a Markov chain. The transition matrix P,, representing the
Markov chain for the GI/G/1/K system is

[ Fy F, Fy - Fo1 F, |
14

Vv
Pa'r' = 1% s ; (1)

where
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[0 & ] [ 1 ]
S8 s s s
Fj = aj .. V = SOﬂ S
s°3 S T
F | i s°8 S |

where F' = 8%8+ S and 8% = 1 — S1, and the matrices F;, V are of dimensions
(Km+1) x (Km+1).

The Markov chain is level-dependent and is a special case of M/G/1 type.
Let the stationary distribution of P,, be = [#1,%2, .. .,Z,), where

Ty = [a:k,o,a:k,l, ce 7-'17k,K] and Tk = [fEk,z‘,l, Lhi 2y xk,i,m]yi = 1, 2, ey K.

The entry xy o is the probability that the remaining interarrival time is k with
no customer in service; xy ; ; is the probability that the remaining interarrival
time is k, the number of customers in the system is ¢ and the phase of service of
the customer in service is j.

If the Markov chain is positive recurrent, then the stationary vector z exists
and satisfies

zP,, ==z, zl =1.

Writing F; = a;U, the equation £ P, = z yields the recursion

Th =ap2iU and zp =z V+apziU, k=n-1,...,2,1. (2)
With this, we have |
Theorem 1. If the Markov chain is positive recurrent, then
i, =x21U6,(V), k=1,2,...,n, (3)
n—k .
where ax (V) = 3 axy;V7?, and 21 is normalized such that
=0
n n
11 = (Z cx) "t cp = Zai' (4)
k=1 i=k

Proof. We first prove (3) is true for k = 1,2,...,n by induction. For k = n, it
is-trivial. Suppose that (3) is true k = s+ 1. Then for k = s, we derive from (2)
that
s =251V +a2.U = $1Uds+1(V)V +asz1U = $1U&S(V).
Thus by induction, (3) is true for k =1,2,...,n.
For evaluating 2,, note that the constraint £1 = 1 leads to
ziU(al + oV +esVZi4 4o,V Hl =1

Consequently (4) follows from the fact that U, V are stochastic.
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Remark 1. In practical computations, we can use (2) instead of (3) to calcu-
late zx, k = 2,...,n. In calculating £; the method has the same computational
complexity as that based on the elapsed time approach [2], since the most com-
putationally involved step is evaluating the matrix a1(V). Method I is more
appropriate when n > m, and when n < m we may use Method II(to be dis-
cussed in Section 4). When n = m, either method is appropriate.

Remark 2. Let y;, = z41, then y = [y, ..., y,] satisfies
y=y(T+T%) and yl=1.
This is a good criteria for checking whether z is correctly calculated.

3.1. Positive recurrence. When n or m tends to infinity, we need to consider
the positive recurrence of the resulting Markov chain.

Let us first consider the case when m < oo and n = oo. It is noted that the
represented chain (1) is a special case of the M/G/1 system and the associated
matrix A is simply the matrix V which is reducible. In this case, the matrix A
can be written, possibly after a permutation of its rows and columns, as

F p©® po p® ... pUd]
0o Ccm g - 0
A= 0 0 o .. 0 ,
|0 0 9 ... |

where the blocks C(®) for 1 < 5 < J are irreducible and stochastic and D is
substochastic.

Let 4" be the stationary probability vector of C®). Then the stationary
drifts

dM =0-yMcM1<0, VI<h<J

Consequently in this case that m < oo, the Markov chain is positive recurrent
without any restriction.

When n < oo and m = oo, we simply consider Method II(to be discussed in
Section 4) and use the same idea as above. In this case, the resulting chain is
also positive recurrent always.

The last case is when m = n = oco. In this case A = V is not a finite
TPM. However, the sum of the block rows of A outside the boundaries, i.e.,
A= (8°8) + S. We know that if E[S] is finite then (S°8) + S has a stationary
vector [7]. Hence Ahasa stationary vector 9. An alternative intuitive argument
is that at any level 4(¢ > 1) the Markov chain will escape to level ¢+ 1 with zero
probability and escape to level ¢ — 1 with probability V1 = 1. Therefore this
Markov chain will be positive recurrent always. This is one advantage of this
method, compared with that based on the elapsed time approach [2].
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With the stationary distribution of the recurrent Markov chain, one can derive
the queue length, waiting time of the GI/G/1/K queue, as what has been done
in [2]. Here we omit the details.

3.2. When n = co. Another advantage with using the remaining time approach

is that when n = oo the Markov chain is a special case of M/G/1 type, and the

associated G matrix is simply the matrix V. This thus makes solving for z easy.
Let Fj = 372 F;V'~7, then we have

.'ci:xl}_?‘i, i=2,....

This is based on Ramaswami’s algorithm [8] for the M/G/1 system which states
that
i—1
zZ; = [Z()Bi + ZZin_H_j](I — Al)_l,
=1
where z = (2o, 21, . . ] is the stationary probability vector of the transition matrix

I BO 31 BQ B3 B4
Co A1 Ay A; Ay
Ay A1 A A

Fujar = Ay A A
0 A1 Az

and B; = Ef_’;] B;G'7J, and A4; = Zf_‘;j A;G*~7. The vector zy is obtained
using the results of Neuts [?]. In our case this involves solving

oo
i=2Y FVI7Lal1=1
7j=1

and then obtaining
T, = Cfl’,

where ¢ is a normalization constant.

4. Method I1

The second alternative method uses the remaining service times as the level,
for the state space of the GI/G/1/K system. At time ¢, let IV, be the phase of the
arrival, L; be the number of the customers in the system, J; be the remaining
service time of the customer in service. Consider the state space

E={(0,Nt)U(Jt,Lt,Nt), Jt =1,2,...,m; Lt = 1,,K, Nt =1,...,n}. (5)

It is obvious that = is indeed a Markov chain, and the transition matrix P,, has
the form
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" g -
Dy Dy Dy D3 -+ Dpoy1 Dy
H
Psr = H )
H
- H O -
where E = [T%,0], Dy = (o] with 0 being a zero matrix of dimension
nx (K —1)n, and for j > 1,
T« T T'a
T T'a
Dj = b] , H= : R
- T T'a
T T'a D

where D =T + T and T = 1 — T1, and the matrices D;(i > 1), H are of
dimension (Kn) x (Kn).

Obviously, P, is also a special case of M/G/1 type, and if the chain is positive
recurrent, then the associated stationary distribution exists. Let the stationary
distribution of Py, be y = [y, ¥1,¥2; - - -, ¥,n), Where

Yo = [yo,l,yo,% N ~,yo,n]a Y = [yk,lv e ayk,K]v

and Yyp, = [yk@l, Yk,i 2w s yk,i,n],i =12,..., K.

Theorem 2. Writing D; = b;F, j =1,2,...,m, then
ye =y Fhu(H), k=2,3,...m, (6)

where by(H) = Z;n;ok berjH?, and [yo,y,] is the left eigenvector which corre-
sponds to the eigenvalue of 1 for the stochastic matriz

5 ou
Dy D |’

Here Dy, = Fby(H) records the probability, starting from level 1, of reaching
level 1 before level 0, and [yo,y,] is normalized with

yol +y[I+ () &)Fll=1, (7)
k=2
where ¢, = szn:k b,.
Proof. The equality yPs, = y yields
T FE
o vil=W0 v wl| Do D |, (8)

0 H
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and
Ym =¥, Dm k=m-1,...,3,2. 9)
From the recursion (9) and induction process, it is easy to prove that (6) is
true for £ =2,3,...,m. R
Substituting y, = y1 Fb2(H) into (8), we obtain
o wl=lwo wl| , o
Yo Uil =Wo ¥ Dy Dy |’

and  y, =y, D +y, 1 H,

where

m
Diy =Dy + Fby(H)H = Y b;FHI™' = Fby(H).
j=1
Now the constraint y1 = 1 leads to

m
yol +311+ > y1Fby(H)1 = 1.
k=2

Hence (7) follows from the fact that H is stochastic.

Alfa [2] consider the GI/G/1/K system with the state space as (5), where
Ny, Ly are defined as in (5), but J; is represented using the elapsed time approach.
The elapsed time representation of the service times can be seen in [2]. In Model
IT Alfa [2] only captured the system when it is busy and ignores the idle states.
We present a more correct transition matrix Ps. as follows

r

T
Cy
Cs

Cm— 1
Cm

F
B,
B

Bm— 1
Br,

A

Az

Am—l
0

where B; = (1 —b;)F, Aj = b;H,C; = (1 - b;) Dy, and F, H, Dy, E are defined
in Theorem 2, and b; = (1 — > _obu)/(1— Zi;(l) by). Let the stationary dis-
tribution of Py, be z = [20,21,22,...,2,,]. We state the formulae for z without
proofs since the proofs are similar to proving Theorem 2.

Theorem 3.
R = zk—lAk—h k= 2, 3, ey,
and 29, 21] is the left eigenvector which corresponds to the eigenvalue of 1 for
the stochastic matriz
T E
bi(H)Dy bi(H)F |’

where by (H) = Soi b HITY and [20,21] is normalized such that



Analysis of the discrete-time GI/G/1/K using the remaining time approach 161

m
20l + (> &)zl =1,
k=1
where &, = Y1, by,

5. The GI*/G/1/K system

The idea discussed in Method I-II can be extended to the case where the
arrivals are in batch. Let v,k = 1,2, ... be the probability when an arrival can
occur with batch size k. Set I'y = Z;‘;k v;. Then for this case in Method 1,
the matrix V in transition matrix P, remains the same, but the matrix U in
F; = a;U changes and has the form

(0 H, H, Hs -+ Hg.. Hy
Zy Zs Zz - Zg-1 Z,
Zy Za o Zi-n Zr-a
U= . : . ’
Z Zs Zs
Z Za
Z

where
Hj=v8, Hx=TgB, Zi= 'zl(SOﬂ), 7, =T1(8°B+5),
Z; =7;(8%B) +vj-1S, j>2, Z;=T,_1(8°B)+T;S, J>2.
In Method 11, the matrices T, E, H of Py, and T, E, A;, C; of P, remain the
same, and the matrix F in D; = b;F, B; = (1 — b;)F has the form

[ Zy 2y Zs - Zea Ik )
T Zv Zo - Zi-z Zi-
F= . . : : ,
T Zl ZQ Z3
T VAL Zs
L T 7 |

where
Z;=vT), 1<j<K-1, Z;=T;T%), 1<J<K.
Finally, we point out that the idea in this paper can also be extended to the
GI/GY /1/K system.
6. Conclusion

We have shown that by selecting the remaining interarrival or (or service)
times as the level in the state space of the GI/G/1/K system, we can obtain
a special structure of the M/G/1-type process. The resulting structure enables
us to derive the explicit solution of the associated Markov-based chain and is
positive recurrent without any restriction. Hence the remaining time approach
is a better choice compared with that based on the elapsed time approach.
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