DOI QR코드

DOI QR Code

Coherent Forecasting in Binomial AR(p) Model

  • Published : 2010.01.31

Abstract

This article concerns the forecasting in binomial AR(p) models which is proposed by Wei$\ss$ (2009b) for time series of binomial counts. Our method extends to binomial AR(p) models a recent result by Jung and Tremayne (2006) for integer-valued autoregressive model of second order, INAR(2), with simple Poisson innovations. Forecasts are produced by conditional median which gives 'coherent' forecasts, and we estimate the forecast distributions of future values of binomial AR(p) models by means of a Monte Carlo method allowing for parameter uncertainty. Model parameters are estimated by the method of moments and estimated standard errors are calculated by means of block of block bootstrap. The method is fitted to log data set used in Wei$\ss$ (2009b).

Keywords

References

  1. Al-Osh, M. A., Aly, E. -E. and A. A. (1992). First-order autoregressive time series with negative binomial and geometric marginals, Communications in Statistics-Theory and Methods, 21, 2483-2492. https://doi.org/10.1080/03610929208830925
  2. Al-Osh, M. A. and Alzaid, A. A. (1987). First-order integer-valued autoregressive (INAR(1)) process, Journal of Time Series Analysis, 8, 261-275. https://doi.org/10.1111/j.1467-9892.1987.tb00438.x
  3. Alzaid, A. A. and Al-Osh, M. A. (1988). First-order integer-valued autoregressive process: distributional and regression properties, Statistica Neerlandica, 42, 53-61. https://doi.org/10.1111/j.1467-9574.1988.tb01521.x
  4. Alzaid, A. A. and Al-Osh, M. A. (1990). An integer-valued $p^{th}$-order autoregressive structure (INAR(p)) process, Journal of Applied Probability, 27, 314-324. https://doi.org/10.2307/3214650
  5. Bockenholt, U. (1999). Mixed INAR(1) Poisson regression models: Analyzing heterogeneity and serial dependencies in longitudinal count data, Journal of Econometricsc, 89, 317-338.
  6. Brannas, K. and Hellstrom, J. (2001). Generalized integer-valued autoregression, Econometric Reviews, 20, 425-443. https://doi.org/10.1081/ETC-100106998
  7. Davison, A. C. and Hinkley, D. V. (1997). Bootstrap Methods and Their Application, Cambridge University Press, Cambridge.
  8. Du, J. -G. and Li, Y. (1991). The integer-valued autoregressive (INAR(p)) model, Journal of Time Series Analysis, 12, 129-142. https://doi.org/10.1111/j.1467-9892.1991.tb00073.x
  9. Freeland, R. and McCabe, B. P. M. (2004). Forecasting discrete valued low count time series, International Journal of Forecasting, 20, 427-434. https://doi.org/10.1016/S0169-2070(03)00014-1
  10. Jung, R. and Tremayne, A. (2006). Coherent forecasting in integer time series models, International Journal of Forecasting, 22, 223-238. https://doi.org/10.1016/j.ijforecast.2005.07.001
  11. Kim, H. -Y. and Park, Y. (2006a). Prediction mean squared error of the poisson inar(1) process with estimated parameters, Journal of the Korean Statistical Society, 35, 37-47.
  12. Kim, H. -Y. and Park, Y. (2006b). Bootstrap confidence intervals for the INAR(1) process, The Korean Communications in Statistics, 13, 343-358. https://doi.org/10.5351/CKSS.2006.13.2.343
  13. Kim, H. -Y. and Park, Y. (2008). A non-stationary integer-valued autoregressive model, Statistical Papers, 49, 485-502. https://doi.org/10.1007/s00362-006-0028-1
  14. Kunsch, H. R. (1989). The Jackknife and the Bootstrap for General Stationary Observations, The Annals of Statistics, 17, 1217-1241. https://doi.org/10.1214/aos/1176347265
  15. Latour, A. (1998). Existence and stochastic structure of a non-negative integer-valued autoregressive process, Journal of Time Series Analysis, 19, 439-455. https://doi.org/10.1111/1467-9892.00102
  16. McKenzie, E. (1985). Some simple models for discrete variate series, Water Resources Bulletin, 21, 645-650. https://doi.org/10.1111/j.1752-1688.1985.tb05379.x
  17. Park, Y, Choi J. W. and Kim, H.-Y. (2006). Forecasting cause-age specific mortality using two random processes, Journal of the American Statistical Association, 101, 472-483. https://doi.org/10.1198/016214505000001249
  18. Steutel, F. W. and van Harn, K. (1979). Discrete analogues of self-decomposability and stability, The Annals of Probability, 7, 893-899. https://doi.org/10.1214/aop/1176994950
  19. Tay, A. S. and Wallis, K. F. (2000). Density forecasting: A survey, Journal of Forecasting, 19, 235-254. https://doi.org/10.1002/1099-131X(200007)19:4<235::AID-FOR772>3.0.CO;2-L
  20. Weiss, C. H. (2009a). Monitoring correlated processes with binomial marginals, Journal of Applied Statistics, 36, 391-414.
  21. Weiss, C. H. (2009b). A new class of autoregressive models for time series of binomial counts, Communications in Statistics - Theory and Methods, 38, 447-460. https://doi.org/10.1080/03610920802233937

Cited by

  1. Binomial AR(1) processes: moments, cumulants, and estimation vol.47, pp.3, 2013, https://doi.org/10.1080/02331888.2011.605893
  2. Parameter estimation for binomial AR(1) models with applications in finance and industry vol.54, pp.3, 2013, https://doi.org/10.1007/s00362-012-0449-y