DOI QR코드

DOI QR Code

Phylogenetic Analysis of Phyllospadix iwatensis Based on Nucleotide Sequences Encoding 18S rRNA and ITS-1

  • Kim, Jong-Myoung (Dept. of Marine Biomaterials and Aquaculture, Pukyong National University) ;
  • Choi, Chang-Geun (Dept. of Ecological Engineering, Pukyong National University)
  • Received : 2010.11.03
  • Accepted : 2010.12.13
  • Published : 2010.12.31

Abstract

Seagrasses are marine angiosperms of ecological importance in providing shelter and food to aquatic species as well as maintaining the carbon cycle on earth. Phyllospadix iwatensis is a seagrass of the family Zosteraceae and is distributed along the eastern coast of Korea. The nucleotide sequences of P. iwatensis nuclear genes encoding 18S ribosomal RNA (rRNA) and internal transcribed spacer-1 (ITS-1) were determined for molecular phylogenetic analysis. Genomic DNA was isolated from P. iwatensis and used for PCR amplification of 18S rRNA and ITS-1. Examination of the 18S rRNA sequence of P. iwatensis showed a close (99% similarity) relationship to Zostera noltii, another genus of Zosteraceae, but a distant (84% similarity) evolutionary relationship to other macroalgal Laminariales species. Further discrepancies found in ITS-1 nucleotide sequences between closely related species indicate that the sequence information could be used for species identification.

Keywords

References

  1. Bird CJ, Murphy CA, Rics EL and Ragan MA. 1992. The 18S rRNA gene sequences of four commercially important seaweeds. J Appl Phycol 4, 379-84. https://doi.org/10.1007/BF02185796
  2. Hoarau G, Coyer JA, Stam WT and Olsen JL. 2007. A fast and inexpensive DNA extraction/purification protocol for brown macroalgae. Mol Ecol Notes 7, 191-3. https://doi.org/10.1111/j.1471-8286.2006.01587.x
  3. Koonjul PK, Brandt WF, Farrant JM and Lindsey GG. 1999. Inclusion of polyvinylpyrrolidone in the polymerase chain reaction reverses the inhibitory effects of polyphenolic contamination of RNA. Nucl Acids Res 27, 915-6. https://doi.org/10.1093/nar/27.3.915
  4. Kuo J, Iizumi H, Njelsen BE and Aioi K. 1990. Fruit anatomy, seed germination and seedling development in the Japanese seagrass Phyllospadix (Zosteraceae). Aquatic Bot 45, 53-62.
  5. Nakajima M, Kitade Y, Iitsuka O, Fukuda S and Saga N. 2000. Rapid extraction of high-quality genomic DNA from Porphyra yezoensis (Bangiales, Rhodophyta). Phycol Res 48, 15-7.
  6. Park JI and Lee K-S. 2009. Peculiar growth dynamics of the surfgrass Phyllospadix japonicus on the southeastern coast of Korea. Mar Biol 156, 2221-33. https://doi.org/10.1007/s00227-009-1250-x
  7. Philips RC. 1979. Ecological notes on Phyllospadix (Potamogetonaceae) in the Northeast Pacific. Aquatic Bot 6, 159-70. https://doi.org/10.1016/0304-3770(79)90059-7
  8. Phillips RC and Menez EG. 1988. Seagrasses. Smithsonian Contrib Mar Sci 34, 1-104.
  9. Sambrook J and Russell DW. 2001. Molecular cloning: A laboratory manual. 3rd edition. Cold Spring Harbor Laboratory Press, NY, Plainview.
  10. Shin HC, Oh YS and Choi HK. 1993. Taxonomic examination of Korean seagrasses I: Morphology and distribution of the genus Phyllospadix (Zosteraceae). Kor J Plant Tax 23, 189-99. https://doi.org/10.11110/kjpt.1993.23.4.189
  11. Snirc A, Silberfeld T, Bonnet J, Tillier A, Tuffet S, Tillier A, Tuffet S and Sun JS. 2010. Optimization of DNA extraction from brown algae (Phaeophyceae) based on a commercial kit. J Phycol 46, 616-21. https://doi.org/10.1111/j.1529-8817.2010.00817.x
  12. Tamura K, Dudley J, Nei M and Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24, 1596-9. https://doi.org/10.1093/molbev/msm092
  13. Thompson JD, Higgins DG and Gibson TJ. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weight matrix choice. Nucleic Acids Res 22, 4673-80. https://doi.org/10.1093/nar/22.22.4673
  14. Tomlinson PB (1982) Anatomy of the Monocotyledons VII. Helobiae (Alismatidae). Clarendon Press. Oxford.
  15. Turner T. 1985. Stability of rocky intertidal surfgrass beds; persistence, preemption, and recovery. Ecology 66, 83- 92. https://doi.org/10.2307/1941308
  16. Valez-Alvarez E, Andreakis N, Lago-Leston A, Pearson G, Serrao EA, Procaccini G, Duarte CM and Marba N. 2006. Genomic DNA isolation from green and brown algae (Caulerpales and Fucales) for microsatellite library construction. J Phycol 42, 741-745. https://doi.org/10.1111/j.1529-8817.2006.00218.x
  17. Varma A, Padh H and Shrivastava N. 2007. Plant genomic DNA isolation : an art or a science. Biotechnol J 2, 386- 92. https://doi.org/10.1002/biot.200600195
  18. Williams SL 1995. Surfgrass (Phyllospadix torreyi) reproduction: reproductive phenology, resource allocation, and male parity. Ecology 76, 1953-70. https://doi.org/10.2307/1940726
  19. Yabe T, Ikusima I and Tsuchiya T. (1995) Production and population ecology of Phyllospadix iwatensis Makino. I. Leaf growth and biomass in an intertidal zone. Ecol Res 10, 291-9. https://doi.org/10.1007/BF02347855
  20. Yotsukura N, Denboh T, Motomura T, Horiguchi T, Coleman AW and Ichimura T. 1999. Little divergence in ribosomal DNA internal transcribed spacer-1 and -2 sequences among non-digitate species of Laminaria (Phaeophyceae) from Hokkaido, Japan. Phycol Res 47, 71-80. https://doi.org/10.1111/j.1440-1835.1999.tb00286.x