DOI QR코드

DOI QR Code

Effects of Water Temperature, Salinity and Irradiance on the Growth of Harmful Dinoflagellate Cochlodinium polykrikoides Margelef isolated from South Sea of Korea in 2008

2008년 한국 남해안에서 분리한 유해 와편모조류 Cochlodinium polykrikoides Margelef의 성장에 미치는 수온, 염분 그리고 광조건의 영향

  • Oh, Seok-Jin (Korea Inter-University Institute of Ocean Science, Pukyong National University) ;
  • Kim, Chang-Hoon (Department of Marine Bio-Materials & Aquaculture, Pukyong National University) ;
  • Kwon, Hyeong-Kyu (Department of Oceanography, Pukyong National University) ;
  • Yang, Han-Soeb (Department of Oceanography, Pukyong National University)
  • 오석진 (부경대학교 해양과학공동연구소) ;
  • 김창훈 (부경대학교 해양바이오신소재학과) ;
  • 권형규 (부경대학교 해양학과) ;
  • 양한섭 (부경대학교 해양학과)
  • Received : 2010.08.11
  • Accepted : 2010.12.06
  • Published : 2010.12.31

Abstract

The effects of temperature, salinity and irradiance on the growth of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margelef isolated from the South Sea of Korea were examined in the laboratory. Growth was examined under the following combinations of temperature and salinity: 15, 20, 25 and $30^{\circ}C$, and 15, 20, 25, 30 and 35 psu at a constant irradiance of $180\;{\mu}mol/m^2/s$. No growth was observed with a temperature of $15^{\circ}C$ and a salinitiy of 15 psu. Moderate growth rates of more than 0.30 /day were obtained at $25^{\circ}C$ with salinities of 25.35 psu. These values are similar to in situ observations for this species. The maximum growth rate, 0.35 /day, was obtained at $25^{\circ}C$ and 30 psu. In light experiments, cell growth of C. polykrikoides was conducted with constant temperature ($20^{\circ}C$) and salinity (30 psu) under light photon flux densities (PFD) of 10, 25, 50, 70, 100, 150, 250 and $350\;{\mu}mol/m^2/s$. C. polykrikoides did not grow at $10\;{\mu}mol/m^2/s$. Cell growth was observed at irradiance values of $25\;{\mu}mol/m^2/s$ and above. The irradiance-growth curve was described as ${\mu}=0.30{\cdot}(I-15.27)/(I+27.22)$, (r=0.99). This suggests a compensation PFD of $15.27\;{\mu}mol/m^2/s$ and a maximum growth rate of 0.30 /day. In conclusion, C. polykrikoides prefers high salinity, temperature and irradiance in summer in Korea. These results provide important information for understanding the mechanism of C. polykrikoides blooms and developing technology to predict blooms of this organism in the field.

Keywords

References

  1. Baba T, Hiyama S and Tainaka T. 2001. Vertical migration of the toxic dinoflagellate Gymnodinium catenatum and toxicity of cultures oyster in Senzaki Bay, Ymaguchi Perfecture. Bull Plankton Soc Jpn 48, 95-99.
  2. Brand LE, Guillard RRL and Murphy LS. 1981. A method for the rapid and precise determination of acclimated phytoplankton reproduction rates. J Plankton Res 3, 193-201. https://doi.org/10.1093/plankt/3.2.193
  3. Boney AD. 1979. Phytoplankton. Camelot Press, Southampton, U.K., 1-116.
  4. Doblin MA, Blackburn SI and Hallegreff GM. 1999. Growth and biomass stimulation of the toxic dinoflagellate Gymnodinium catenatum (Graham) by dissolved organic substances. J Exp Biol Ecol 236, 33-47. https://doi.org/10.1016/S0022-0981(98)00193-2
  5. Eppley RW. 1972. The temperature and phytoplankton growth in the sea. Fish Bull US 70, 1063-1085.
  6. Fraga S, Gallager S and Anderson D. 1989. Chain-forming dinoflagellates: an adaptation to red tides. In: Red Tides: Biology, Environmental Science and Toxicology. Okaichi T, Anderson DM and Nemoto T, eds. Elsevier, New York, U.S.A., 281-284.
  7. Gallagher JC. 1982. Physiological variation and electrophoretic banding patterns of genetically different seasonal populations of Skeletonema costatum (Bacillariophyceae). J Phycol 18, 148-162. https://doi.org/10.1111/j.1529-8817.1982.tb03169.x
  8. Garate-Lizarraga I, Bustillos-Guzman J, Morquecho J and Lechuga-Deveze C. 2000. First outbreak of Cochlodinium polykrikoides in the Gulf of California. Harmful Algae News, Intergovernmental Oceanographic Commission of UNESCO 21, 7.
  9. Gobler CJ, Berry DL, Anderson OR, Burson A, Koch F, Rodgers BS, Moore LK, Goleski JA, Allam B, Bowser P, Tang Y and Nuzzi R. 2008. Characterization, dynamics and ecological impacts of harmful Cochlodinium polykrikoides blooms on eastern Long Island, NY, USA. Harmful Algae 7, 293-307. https://doi.org/10.1016/j.hal.2007.12.006
  10. Goldman JC and Carpenter EJ. 1974. A kinetic approach to the effect of temperature on algal growth. Limnol Oceanogr 19, 756-766. https://doi.org/10.4319/lo.1974.19.5.0756
  11. Guillard RRL and Ryter D. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can J Microbiol 8, 229-239. https://doi.org/10.1139/m62-029
  12. Hallegraeff GM. 1992. On the global spreading of toxic dinoflagellates. Ciguatera Inf Bull 2, 2-4.
  13. Iwasaki H. 1979. Physiological ecology of red tide flagellates. In: Biochemistry and physiology of protozoa. Levandowsky M and Hutner SH, eds. Academic Press, New York, U.S.A., 357-393.
  14. Kim DI, Matsuyama Y, Nagasoe S, Yamaguchi M, Yoon YH, Oshima Y, Imada N and Honjo T. 2004. Effects of temperature, salinity and irradiance on the growth of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margalef (Dinophyceae). J Plankton Res 26, 1-6. https://doi.org/10.1093/plankt/fbh009
  15. Kim HK, Jung CS, Lim WA, Lee CK, Kim SY, Youn SH, Cho YC and Lee SG. 2001. The spatio-temporal progress of Cochlodinium polykrikoides Blooms in the coastal waters of Korea. J Kor Fish Soc 34, 691-696.
  16. Kudela RM, Ryan JP, Blakely MD, Lane JQ and Peterson TD. 2008. Linking the physiology and ecology of Cochlodinium to better understand harmful algae bloom events: A comparative approach. Harmful Algae 7, 278-292. https://doi.org/10.1016/j.hal.2007.12.016
  17. Lederman TC and Tett P. 1981. Problems in modeling the photosynthesis-light relationship for phytoplankton. Bot Mar 24, 125-134. https://doi.org/10.1515/botm.1981.24.3.125
  18. Lee CK, Kim HG, Lee SG, Jung CS, Kim HG and Lim WA. 2001. Abundance of Harmful algae, Cochlodinium polykrikoides, Gyrodinium impudicum and Gymnodinium catenatum in the coastal area of south sea of Korea and their effects of temperature, salinity, irradiance and nutrient of the growth in culture. J Kor Fish Soc 34, 536-544.
  19. Lee MO and Moon HJ. 2008. Marine environments in the neighborhood of the Narodo as the first outbreak Region of Cochlodinium polykrikoides blooms. J Kor Soc Mar Environ Eng 11, 113-123.
  20. Lee WH and Shim JH. 1995. Intraspecific variation in the light intensity niche component of the diatom Skeletonema costatum from Korean coastal waters. J Kor Soc Oceangr 30, 436-441.
  21. Lee YW and Kim GB. 2007. Linking groundwater-born nutrients and dinoflagellate red-tide outbreaks in the southern sea of Korea using a Ra tracer. Estuarine Coastal and Shelf Sci 71, 309-317. https://doi.org/10.1016/j.ecss.2006.08.004
  22. Lim W-A, Lee Y-S, Park J-G. 2009. Characteristics of Cochlodinium polykrikoides bloom in southeast coastal water of Korea, 2008. The Sea 14, 155-162.
  23. Margalef R. 1961. Hidrografia y fitoplancton de um rea marina de la costa meridional de Puerto Rico. Invest Pesq 18, 33-96.
  24. Oh SJ and Yoon YH. 2004. Effects of water temperature, salinity and irradiance on the growth of the toxic dinoflagellate, Gymnodinium catenatum (Graham) isolated from Yeosuhae Bay, Korea. Algae 14, 293-301. https://doi.org/10.4490/ALGAE.2004.19.4.293
  25. Oh SJ, Yoon YH, Kim DI, Shimasaki Y, Ohsima Y and Honjo T. 2006. Effects of light quantity and quality on the growth of the harmful dinoflagellate, Cochlodinium polykrikoides Margalef (Dinophyceae). Algae 21, 311-316. https://doi.org/10.4490/ALGAE.2006.21.3.311
  26. Oh SJ, Park D-S, Yang H-S, Yoon YH, Honjo T. 2007. Bioremediation on the benthic layer in polluted inner bay by promotion of microphytobenthos growth using light emitting diode (LED). Journal of the Korean Society for Marine Environmental Engineering 10, 93-101.
  27. Park J, Jeong M, Lee J, Cho KJ and Kwon OS. 2001. Diurual vertical migration of a harmful dinoflagellate, Cochlodinium polykrikoides (Dinophyceae) during a red tide in coastal waters of Namhae Island, Korea. Phycologia 40, 292-297. https://doi.org/10.2216/i0031-8884-40-3-292.1
  28. Poole HH and Atkins WRG. 1929. Photoelectric measurements of submarine illumination throughout the year. J Mar Biol Ass 16, 297-324. https://doi.org/10.1017/S0025315400029829
  29. Sachez-Saavedra MP and Voltina D. 1994. The chemical composition of Chaetoceros sp. (Bacillariophyceae) under different light condition. Comp Biochem Physiol 107B, 39-44.
  30. Takahashi M and Hara Y. 1989. Control of diel vertical migration and cell division rhythm of Heterosigma akashiwo by day and night cycles. In: Red Tides. Okaichi T, Anderson DM and Nemoto T, eds. Elsevier, New York, U.S.A., 265-268.
  31. Tomas CR and Smayda TJ. 2008. Red tide blooms of Cochlodinium polykrikoides in a coastal cove. Harmful Algae 7, 308-317. https://doi.org/10.1016/j.hal.2007.12.005
  32. Turquet J, Quod JP, CouteA and Faust M. 1998. Assemblage of benthic dinoflagellates and monitoring of harmful species in Renion island (SW Indian Ocean) during the 1993-1996 period. In: Harmful Algae. Reguera B, Blanco J, Fernandez ML and Wyatt T, eds. Xunta de Galicia and Intergovernmental Oceanographic Commission of UNESCO, 44-47
  33. Whyte J, Haigh N, Ginther N and Keddy L. 2001. First record of blooms Cochlodinium sp. (Gymnodiniales, Dinophyceae) causing mortality to aquacultured salmon on the west coast of Canada. Phycologia 40, 298-304. https://doi.org/10.2216/i0031-8884-40-3-298.1
  34. Yamaguchi M and Honjo T. 1989. Effects of temperature, salinity and irradiance on the growth of the noxious red tide flagellate Gymnodinium nagasikiense (Dinophyceae). Nippon Suisan Gakkaishi 55, 2029-2036 (in Japanese with English abstract). https://doi.org/10.2331/suisan.55.2029
  35. Yamaguchi M. 1994. Physiological ecology of the red tide flagellate Gymnodinium nagasakiensis (Dinophyceae) - Mechanism of the red tide occurrence and its prediction. Bull Nansei Natl Fish Res Inst 27, 251-394 (in Japanese with English abstract).
  36. Yamamoto T, Yoshizu Y and Tarutani K. 1995. Effects of temperature, salinity and irradiance on the growth of toxic dinoflagellate Alexandrium tamarense isolated from Mikawa Bay, Japan. Jpn J Phycol 43, 91-98 (in Japanese with English abstract).
  37. Yamamoto T and Tarutani K. 1997. Effects of temperature, salinity and irradiance on the growth of toxic dinoflagellate Alexandrium tamarense isolated from Hiroshima Bay, Japan. Jpn J Phycol 45, 95-101 (in Japanese with English abstract).
  38. Yamatogi T, Maruta H and Ura K. 2002. Occurrence of Cochlodinium polykrikoides red tide and its characteristics in Imari Bay in 1999. Bull Nagasaki Prefectural Inst Fish 28, 21-22.
  39. Yamatogi T, Sakaguchi M, Iwataki M and Matsuoka K. 2006. Effects of temperature and salinity on the growth of four harmful red tide flagellates occurring in Isahaya Bay in Ariake Sound, Japan. Nippon Suisan Gakkaishi 72, 160-168 (in Japanese with English abstract). https://doi.org/10.2331/suisan.72.160
  40. Yang YR. 1978. Optical properties of sea water (IV). Bull Kor Fish Tech Soc 14, 37-41.

Cited by

  1. Growth Response of the Dinoflagellate Akashiwo sanguinea in Relation to Temperature, Salinity and Irradiance, and its Advantage in Species Succession vol.20, pp.1, 2014, https://doi.org/10.7837/kosomes.2014.20.1.001
  2. Optimal Growth Model of the Cochlodinium Polykrikoides vol.26, pp.4, 2014, https://doi.org/10.9765/KSCOE.2014.26.4.217
  3. Global parameter estimation of the Cochlodinium polykrikoides model using bioassay data vol.35, pp.2, 2016, https://doi.org/10.1007/s13131-016-0806-0
  4. Effects of Irradiance on the Growth of the Toxic Dinoflagellates Alexandrium tamarense and Alexandrium catenella vol.22, pp.12, 2013, https://doi.org/10.5322/JESI.2013.22.12.1571