Characterization of a Solution-processed YHfZnO Gate Insulator for Thin-Film Transistors

  • Kim, Si-Joon (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Kim, Dong-Lim (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Kim, Doo-Na (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Kim, Hyun-Jae (School of Electrical and Electronic Engineering, Yonsei University)
  • 투고 : 2010.11.17
  • 심사 : 2010.12.09
  • 발행 : 2010.12.31

초록

A solution-processed multicomponent oxide, yttrium hafnium zinc oxide (YHZO), was synthesized and deposited as a gate insulator. The YHZO film annealed at $600^{\circ}C$ contained an amorphous phase based on the results of thermogravimetry, differential thermal analysis, and X-ray diffraction. The electrical characteristics of the YHZO film were analyzed by measuring the leakage current. The high dielectric constant (16.4) and high breakdown voltage (71.6 V) of the YHZO films resulted from the characteristics of $HfO_2$ and $Y_2O_3$, respectively. To examine if YHZO can be applied to thin-film transistors (TFTs), indium gallium zinc oxide TFTs with a YHZO gate insulator were also fabricated. The desirable characteristics of the YHZO films when used as a gate insulator show that the limitations of the general binary-oxide-based materials and of the conventional vacuum processes can be overcome.

키워드

참고문헌

  1. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science 300, 1269 (2003). https://doi.org/10.1126/science.1083212
  2. H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, and H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, Appl. Phys. Lett. 89, 112123 (2006). https://doi.org/10.1063/1.2353811
  3. X. H. Zhang, B. Domercq, X. Wang, S. Yoo, T. Kondo, Z. L. Wang, and B. Kippelen, Organic Electronics 8, 718 (2007). https://doi.org/10.1016/j.orgel.2007.06.009
  4. Y. Ohya, T. Kume, and Y. Ban, Jpn. J. Appl. Phys 44, 1919 (2005). https://doi.org/10.1143/JJAP.44.1919
  5. G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys 89, 5243 (2001). https://doi.org/10.1063/1.1361065
  6. J. Robertson, Rep. Prog. Phys. 69, 327 (2006). https://doi.org/10.1088/0034-4885/69/2/R02
  7. J. F. Wager, D. A. Keszler, and R. E. Presley, Transparent Electronics, Springer (2008).
  8. S. J. Kim, D. L. Kim, and H. J. Kim, Thin Solid Films 517, 4135 (2009). https://doi.org/10.1016/j.tsf.2009.02.002
  9. B. S. Ong, C. Li, Y. Li, Y. Wu, and R. Loutfy, J. Am. Chem. Soc. 129, 2750 (2007). https://doi.org/10.1021/ja068876e
  10. G. H. Kim, B. D. Ahn, H. S. Shin, W. H. Jeong, H. J. Kim, and H. J. Kim, Appl. Phys. Lett. 94, 33501 (2009). https://doi.org/10.1063/1.3073858
  11. G. H. Kim, H. S. Shin, B. D. Ahn, K. H. Kim, W. J. Park, and H. J. Kim, J. Electrochem. Soc. 156, H7 (2009). https://doi.org/10.1149/1.2976027
  12. T. Nishide and M. Shibata, J. Sol-Gel Sci. Technol. 21, 189 (2001). https://doi.org/10.1023/A:1011226418734
  13. T. Nishide, S. Honda, M. Matsuura, M. Ide, Thin Solid Films 371, 61 (2000). https://doi.org/10.1016/S0040-6090(00)01010-5
  14. Y. P. Zhao, G. C. Wang, and T. M. Lu, Phys. Rev. B 60, 9157 (1999).
  15. S. J. Kim, G. H. Kim, D. L. Kim, D. N. Kim, and H. J. Kim, Phys. Status Solidi A 207, 1668 (2010). https://doi.org/10.1002/pssa.200983724
  16. R. Martins, P. Barquinha, I. Ferreira, L. Pereira, G. Goncalves, and E. Fortunato, J. Appl. Phys. 101, 044505 (2007). https://doi.org/10.1063/1.2495754