Production of Biodiesel from High Acid Value Oils using Amberlyst-15

Amberlyst-15를 이용한 산가가 높은 유지로부터 바이오디젤의 생산

  • Sim, Yeon-Ju (Department of Chemical Engineering, University of Seoul) ;
  • Kim, Eui-Yong (Department of Chemical Engineering, University of Seoul)
  • 심연주 (서울시립대학교 공과대학 화학공학과) ;
  • 김의용 (서울시립대학교 공과대학 화학공학과)
  • Received : 2010.08.26
  • Accepted : 2010.10.23
  • Published : 2010.10.31

Abstract

Biodiesel has attracted great attention as an alternative renewable energy source for the replacement of petroleumbased diesel fuel, yet its high production cost due to expensive oil feedstock remainsas the major economical obstacle. In this study, we investigated catalysts and reaction conditions for the acid catalyzed pre-conversion of free fatty acid (FFA) to fatty acid methyl ester (FAME) in cheap low-grade oils of high acid value. The NaOH base catalyzed reaction of vegetable oil of the initial acid value of 2 mg KOH/g led to a high FAME conversion above 95.4%, but the conversion abruptly decreased at higher initial acid values. This base catalyzed reaction was practically ineffective displaying the FAME conversion below 15% even at the initial acid value of 10 mg KOH/g by the severe saponification side reaction. Among the various catalysts studied for the pre-conversion of FFA to FAME, Amberlyst-15 was the most effective in reducing the acid value, and the optimum reaction condition identified was $65^{\circ}C$ with oil to methanol ratio of 1:3 and catalyst concentration of 15% (w/w). As the results, great enhancements in the overall biodiesel conversion were achievable via a consecutive reaction of the acid catalyzed FFA pre-conversion to FAME under the optimal condition obtained with Amberlyst-15 followed by the NaOH base catalyzed reaction, far above the extent which was obtainable by the single NaOH catalyzed reaction.

Keywords

References

  1. Jeong, D. S., B. U. Nam, and Y. J. Jeong (2009) Development of eco-friendly fuel oil using vegetable and petroleum oils. Appl. Chem. 13: 157-160.
  2. Hong, K. H. and W. H. Hong (2007) Biodiesel production technology and its fuel properties. Korean Chem. Eng. Res. 45: 424-432.
  3. Lim, Y. K., C. H. Jeon, S. Kim, E. S. Yim, H. O. Song, S. C. Shin, and D. K Kim (2009) Determination of fuel properties for blended biodiesel from various vegetable oils. Korean Chem. Eng. Res. 47: 237-242.
  4. Zhang, Y., M. A. Dube, D. D. McLean, and M. Kates (2003) Biodiesel production from waste cooking oil. Bioresour. Technol. 89: 1-16. https://doi.org/10.1016/S0960-8524(03)00040-3
  5. Jeong, G. T. and D. H. Park (2006) Pretreatment of feedstock with high free fatty acid. Korean J. Biotechnol. Bioeng. 21: 418-421.
  6. Ghadge, S. V. and H. Raheman (2005) Biodiesel production from mahua (madhuca indica) oil having high free fatty acids. Biomass Bioenergy. 28: 601-605. https://doi.org/10.1016/j.biombioe.2004.11.009
  7. Naik, M., L. C. Meher, S. N. Naik, and L. M. Das (2008) Production of biodiesel from high free fatty acid karanja (pongamia pinnata) oil. Biomass Bioenergy. 32: 354-357. https://doi.org/10.1016/j.biombioe.2007.10.006
  8. Marchetti, J. M., V. U. Miguel, and A. F. Errazu (2007) Heterogeneous esterification of oil with high amount of free fatty acids. Fuel. 86: 906-910. https://doi.org/10.1016/j.fuel.2006.09.006
  9. Gerpen, J. V. (2005) Biodiesel processing and production. Fuel Process. Technol. 86: 1097-1107. https://doi.org/10.1016/j.fuproc.2004.11.005
  10. Gunstone, F. D. (1999) Fatty Acid and Lipid Chemistry. pp. 205-214. An Aspen Publication, Gaithersburg, Maryland, USA.
  11. Lin, L., D. Ying, S. Chaitep, and S. Vittayapadung (2009) Biodiesel production from crude rice bran oil and properties as fuel. Appl. Energy. 86: 681-688. https://doi.org/10.1016/j.apenergy.2008.06.002
  12. Tiwari, A. K., A. Kumar, and H. Raheman (2007) Biodiesel production from jatropha oil (jatropha curcas) with high free fatty acids. Biomass Bioenergy. 31: 569-575. https://doi.org/10.1016/j.biombioe.2007.03.003
  13. Lim, Y. K., S. C. Shin, E. S. Yim, and H. O. Song (2008) The effective product method of biodiesel. J. Korean Ind. Eng. Chem. 19: 137-144.
  14. Schuchardt, U., R. Sercheli, and R. M. Vargas (1998) Transesterifiaction of vegetable oils. J. Braz. Chem. Soc. 9: 199-210.
  15. Mbaraka, I. K. and B. H. Shanks (2006) Conversion of oils and fats using advanced mesoporous heterogeneous catalyst. J. Am. Oil Chem. Soc. 83: 79-91. https://doi.org/10.1007/s11746-006-1179-x
  16. Mbaraka, I. K., K. J. McGuire, and B. H. Shanks (2006) Acidic mesoporous silica for the catalytic conversion of fatty acid in beef tallow. Ind. Eng. Chem. Res. 45: 3022-3028. https://doi.org/10.1021/ie0601089
  17. Lam, M. K., K. T. Lee, and A. R. Mohamed (2010) Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel. Biotechnol. Adv. 28: 500-518. https://doi.org/10.1016/j.biotechadv.2010.03.002
  18. Jothiramalingam, R. and M. K. Wang (2009) Review of recent developments in solid acid, base, and enzyme catalysts (heterogeneous) for biodiesel production via transesterification. Ind. Eng. Chem. Res. 48: 6162-6172. https://doi.org/10.1021/ie801872t
  19. Kunin, R., E. F. Meitzner, J. A. Oline, S. A. Fisher, and N. Frisch (1962) Characterization of Amberlyst-15; macroreticular sulfonic acid cation exchange resin. Ind. Eng. Chem. Prod. Res. Dev. 1: 140-144. https://doi.org/10.1021/i360002a016
  20. Ozbay, N., N. Oktar, and N. A. Tapan (2008) Esterification of free fatty acids in waste cooking oils: role of ionexchange resins. Fuel. 87: 1789-1798. https://doi.org/10.1016/j.fuel.2007.12.010
  21. Jeong, G. T., D. H. Kim, and D. H. Park (2007) Response surface methodological approach for optimization of free fatty acid removal in feedstock. Appl. Biochem. Biotechnol. 136-140: 583-593.
  22. Suppes, G. J., M. A. Dasari, E. J. Doskocil, P. J. Mankidy, and M. J. Goff (2004) Transesterification of soybean oil with zeolite and metal catalysts. Appl. Catal., A. 257: 213-223. https://doi.org/10.1016/j.apcata.2003.07.010
  23. Yadav, G. D. and M. B. Thathagar (2002) Esterification of maleic acid with ethanol over cation-exchange resin catalysts. React. Funct. Polym. 52: 99-110. https://doi.org/10.1016/S1381-5148(02)00086-X
  24. Sano, Y., N. Yamaguchi, and T. Adachi (1974) Mass transfer coefficients for suspended particles in agitated vessels and bubble columns. J. Chem. Eng. Jpn. 7: 255-261. https://doi.org/10.1252/jcej.7.255
  25. Stoffel, W., F. Chu, H. Edward, and J. Ahrens (1959) Analysis of long-chain fatty acids by gas-liquid chromatography. Anal. Chem. 31: 307-308. https://doi.org/10.1021/ac60146a047
  26. Freedman, B., R. O. Butterfield, and E. H. Pryde (1986) Transesterification kinetics of soybean oil. J. Am. Oil Chem. Soc. 63: 1986-1380.
  27. Schuchardt, U., R. Sercheli, and R. M. Vargas (1998) Transesterification of vegetable oils. J. Braz. Chem. Soc. 9: 199-210.
  28. Leung, D. Y. C., X. Wu, and M. K. H. Leung (2010) A review on biodiesel production using catalyzed transesterification. Appl. Energy. 87: 1083-1095. https://doi.org/10.1016/j.apenergy.2009.10.006