Development of Nanoenzymes for the Production of Glucose from Seaweed and Various Polysaccharide

해조류 및 다당류로부터 포도당 생산을 위한 나노효소 개발 및 특성

  • Jin, Lie-Hua (Department of Chemical and Biochemical Engineering, Chosun University) ;
  • Lee, Jung-Heon (Department of Chemical and Biochemical Engineering, Chosun University)
  • 김려화 (조선대학교 생명화학공학과) ;
  • 이중헌 (조선대학교 생명화학공학과)
  • Received : 2010.09.10
  • Accepted : 2010.10.21
  • Published : 2010.10.31

Abstract

The magnetically separable polyaniline nanofiber enzymes were developed for the recycle of enzyme and enhanced enzyme stability. The stability of enzyme was maintained over 90% for 8 days under room temperature and vigorous shaking conditions (200 rpm). The residual activity of immobilized enzyme was over 60% after 8 days incubation at $55^{\circ}C$. Glucose was produced from various polysaccharides, agarose, curdlan, cellulose, and sea weed, using magnetically separable immobilized enzyme. Glucose production rate with curdlan was 1.2 g/(l h) and showed high decomposition rate due to high mass transfer. After 10 times recycle, the residual activity of immobilized enzyme was over 75%. 1 g/L of glucose was produced with 5 mg of immobilized enzymes.

본 연구에서는 효소의 재활용성과 안정성을 확보하기 위해 자석으로 분리가 가능한 polyaniline nanofiber를 개발하였다. 개발된 고정화 효소는 상온에서 8일 동안 90% 이상의 활성도를 보유하였으며 온도가 높은 $55^{\circ}C$에서는 60% 이상의 활성도를 보유하여 안정성의 유지현상을 보였다. 개발된 고정화 효소는 자석으로 분리가 가능하였으며 이 효소를 이용하여 curdlan, agarose, cellulose, 및 미역을 분해한 결과 포도당을 생산하였으며 curdlan을 분해시킨 경우에는 분해 속도가 1.2 g/L/h로 나타나 다른 다당류에 비해 3-10배 이상 빠른 속도를 나타내었다. 고정화 효소를 반복하여 사용하는 경우 10번 반복 사용했을 때 75% 이상의 활성도를 유지하는 것으로 측정되었다. 젖은 미역 줄기를 10 g/L를 분해하기 위하여 5 mg의 고정화 효소를 사용한 결과 24시간 만에 1 g/L의 glucose를 생산하였다.

Keywords

References

  1. Demirbas, A. (2007) Progress and recent trends in biofuels. Pogress in Energy and Combustion Science 33: 1-18. https://doi.org/10.1016/j.pecs.2006.06.001
  2. Reijnders, L. and M. A. J. Huijbregts (2007) Life cycle greenhouse gas emissions, fossilful demandand solar energy conversion efficiency in Eropean bioethanol production for automotive purposes. Journal of Cleaner prouction 15: 1806-1812. https://doi.org/10.1016/j.jclepro.2006.05.007
  3. Pfeffer, M., W. Wukovits, G. Beckman, and A. Friedl (2007) Analysis an decrease of the energy demand of bioethanol-production by process integration. Applied Thermal Engineering 27: 2657-2664. https://doi.org/10.1016/j.applthermaleng.2007.04.018
  4. El-Sikaily, A., A. E. Nemr, A. Khaled, and O. Abdelwehab (2007) Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon. Journal of Hazardous Materials 148: 216-228. https://doi.org/10.1016/j.jhazmat.2007.01.146
  5. Joaquim, M., Oliveira, J. M. R. Grech, I. B. Leonor, J. F. Mano, and R. L. Reis (2007) Calcium-phosphate derived from mineralized algae for bone tissue engineering applications. Materials Letters 61: 3495-3499. https://doi.org/10.1016/j.matlet.2006.11.099
  6. Deacon, J. W., R. K. W. Macdonald, F. M. Fox, and D. Lascaris (1998) Application of alginate gel for protection of wounds against crown gall (Agrobacterium tumefaciens). Plant Pathology 37: 522-528.
  7. Pandey, R., Z. Ahmad, S. Sharma, and G. K. Khuller (2005), Nano-encapsulation of azole antifungals: Potential applications to improve oral drug delivery. International Journal of Pharmaceutics 301: 268-276. https://doi.org/10.1016/j.ijpharm.2005.05.027
  8. Finotelli, P. V., M. A. Morales, M. H. Rocha-Leão, E. M. Baggio-Saitovitch, and A. M. Rossi (2004) Magnetic studies of iron (III) nanoparticles in alginate polymer for drug delivery applications, Materials Science and Engineering: C. 24: 625-629. https://doi.org/10.1016/j.msec.2004.08.005
  9. Wei Z. and H. Li (2007) Development of an eco-friendly agar extraction technique from the red seaweed Gracilaria lemaneiformis. Journal of Biotechnology 131: S194-S195.
  10. Vilar, V. J. P., C. M. S. Botelho, and R. A. R. Boaventura (2007) Kinetics and equilibrium modelling of lead uptake by algae Gelidium and algal waste from agar extraction industry. Journal of Hazardous Materials 143: 396-408. https://doi.org/10.1016/j.jhazmat.2006.09.046
  11. Vamvakaki, V. and N. A. Chaniotakis (2007) Immobilization of enzymes into nanocavities for the improvement of biosensor stability. Biosensors and Bioelectronics 22: 2650-2655. https://doi.org/10.1016/j.bios.2006.10.040
  12. Salimi, A., E. Sharifi, A. Noorbakhsh, and S. Soltanian (2007) Direct electrochemistry and electrocatalytic activity of catalase immobilized onto electrodeposited nano-scale islands of nickel oxide. Biophysical Chemistry 125: 540-548. https://doi.org/10.1016/j.bpc.2006.11.004
  13. Tang, Z.-X., J.-Q. Qian, and L.-E. Shi (2007) Characterizations of immobilized neutral lipase on chitosan nano-particles. Materials Letters 61: 37-40. https://doi.org/10.1016/j.matlet.2006.04.048