설치동물에서 통증에 대한 한국산 및 미국산 봉독의 진통효과의 비교

Comparison of Antinociceptive Effect of Korean and American Bee Venoms on Pain in Rodent Models

  • Kim, Jong-Min (Veterinary Medical Center, Chungbuk National University) ;
  • Han, Tae-Sung (Veterinary Medical Center, Chungbuk National University) ;
  • Kang, Seong-Soo (College of Veterinary Medicine, Chonnam National University) ;
  • Kim, Gon-Hyung (Veterinary Medical Center, Chungbuk National University) ;
  • Choi, Seok-Hwa (Veterinary Medical Center, Chungbuk National University)
  • 심사 : 2010.11.18
  • 발행 : 2010.12.31

초록

본 연구는 설치모델 동물에서 봉독의 항통각 효과를 평가하고, 한국산 봉독과 미국산 봉독의 항통각 효과를 비교하는 것이 주된 관심이다. 한국산 봉독은 특별히 고안된 봉독 추출기를 사용하여 일벌 (Apis mellifera L.)에 전기충격을 가하여 생봉독을 수집하였으며, 수집된 생봉독은 봉독 건조기를 이용하여 봉독을 건조하였다. 미국산 봉독은 미국 시그마회사에서 상업적으로 판매되는 건조 봉독을 이용하였다. 한국산 봉독과 미국산 건조봉독을 생리식염수에 희석하여 체중 kg당 6 mg과 0.6 mg, 0.06 mg을 마우스와 랫드에 피하로 투여하여 항진통 효과를 조사하였다. 항통각 효과는 한국산 봉독과 미국산 봉독은 서로 비슷하였으며, 봉독의 용량이 많을수록 항통각 효과가 크게 나타났다. 이상의 결과에서 한국산 건조 봉독은 통증 치료에 사용될 수 있을 것으로 생각된다.

Experiments were undertaken to assess the antinociceptive effect of bee venom (BV) in rodent animal models. Comparison of antinociceptive efficacy between Korean BV and commercially available American BV was the primary interest of the study. Korean BV was collected using BV collector devices in which an electrical impulse is used to stimulate the worker bee (Apis mellfera L.) to sting and release venom. After collection, whole BV was evaporated until dry using the BV collector. Commercially available dried American BV was purchased from Sigma Company in USA. Korean and American sourced BVs were diluted and amounts of 6 mg/kg body weight (BW), 0.6 mg/kg BW and 0.06 mg/kg BW were tested. BV was subcutaneously injected to produce an antinociceptive effect and the antinociceptive efficacy was evaluated using a writhing test in mice and a formalin test in rats. The antinociceptive effects of the two BVs tested were similar in mice for visceral pain and showed a dose-dependent response. The antinociceptive effect of Korean BV was not significantly different compare to American BV. These results suggest that Korean BV may be used to achieve an antinociceptive effect for use in medical therapies.

키워드

참고문헌

  1. Abreu RMM, Silva de Moraes RLM, Malaspina O. Histological aspects and protein content of Apis mellifera L. Worker venom glands: the effect of electrical shocks in summer and winter. J Venom Anim Toxins 2000; 6: 87-98.
  2. Bleehen T, Keele CA. Observations on the algogenic actions of adenosine compounds on the human blister base preparation. Pain 1977; 3: 367-377. https://doi.org/10.1016/0304-3959(77)90066-5
  3. Carlsson C. Acupuncture mechanisms for clinically relevant long-term effects-reconsideration and a hypothesis. Acupunct Med 2002; 20: 82-99. https://doi.org/10.1136/aim.20.2-3.82
  4. Chen J, Luo C, Li HL. The contribution of spinal neuronal changes to development of prolonged, tonic nociceptive responses of the cat induced by subcutaneous bee venom injection. Eur J Pain 1998; 2: 359-376. https://doi.org/10.1016/S1090-3801(98)90034-9
  5. Chen J, Luo C, Li H, Chen H. Primary hyperanalgesia to mechanical and heat stimuli following subcutaneous bee venom injection into the plantar surface of hindpaw in the conscious rat: a comparative study with the formalin test. Pain 1999; 83: 67-76. https://doi.org/10.1016/S0304-3959(99)00075-5
  6. Choi SH, Cho SK, Kang SS, Bae CS, Bai YH, Lee SH, Pak SC. Effect of apitherapy in piglets with preweaning diarrhea. Am J Chin Med 2003; 31: 321-326. https://doi.org/10.1142/S0192415X03001004
  7. Choi SH, Kang SS, Bae CS, Cho SK, Pak SC. Effect of bee venom treatment in sow with oligogalactic syndrome postpartum. Am J Chin Med 2003; 31: 149-155. https://doi.org/10.1142/S0192415X03000801
  8. Coderre TJ, Melzack R. The contribution of excitatory amino acids to central sensitization and persistent nociception after formalin-induced tissue injury. J Neurosci 1992; 12: 3665-3670.
  9. Curcio-Vonlanthen V, Schneider CH, Frutig K, Blaser K, Kalbacher H. Molecular parameters in melittin immunogenicity. J Pept Sci 1997; 3: 267-276. https://doi.org/10.1002/(SICI)1099-1387(199707)3:4<267::AID-PSC106>3.0.CO;2-7
  10. Dale TJ, Cryan JE, Chen MX, Trezise DJ. Partial apamin sensitivity of human small conductance Ca(2+)-activated K(+) channels stably expressed in Chinese hamster ovary cells. Naunyn Schmiedebergs Arch Pharmacol 2002; 366: 470-477. https://doi.org/10.1007/s00210-002-0622-2
  11. Dickenson AH, Sullivan AF. Peripheral origins and central modulation of subcutaneous formalin-induced activity of rat dorsal horn neurones. Neurosci Lett 1987; 83: 207-211. https://doi.org/10.1016/0304-3940(87)90242-4
  12. Dubuisson D, Dennis SG. The formalin test, a quantitative study of the analgesic effects of mrophine, meperidine, and brain stem stimulation in rats and cats. Pain 1997; 4: 161-174.
  13. Dunn JD, Killion JJ. Melittin-evoked increase in plasma corticosterone levels. Life Sci 1998; 43: 335-343.
  14. Habermann E, Reiz KG. On the biochemistry of bee venom peptides, melittin and apamin. Biochem Z 1965; 343: 192-203.
  15. Hartman DA, Tomchek LA, Lugay JR, Lewin AC, Chau TT, Carlson RP. Comparison of antiinflammatory and antiallergic drugs in the melittin and D49 PLA2 induced mouse paw edema models. Agents Actions 1991; 34: 84-88. https://doi.org/10.1007/BF01993245
  16. Hoffmann P, Loeit M, Mittenbuhler K, Beck W, Wiesmuller KH, Jung G, Bessler WG. Induction of an epitope-specific humoral immune response by lipopepitde hapten conjugates: enhancement of the anti-melittin response by a synthetic T helper (TH)-cell epitope. FEMS Immunol Med Microbiol 1997; 17: 225-234. https://doi.org/10.1016/S0928-8244(97)00010-2
  17. Hong Y, Abbott FV. Behavioral effects of intraplantar injection of inflammatory mediators in the rat. Neurosciences 1994; 63: 827-836. https://doi.org/10.1016/0306-4522(94)90527-4
  18. Jentsch J. Further studies on the amino acid sequence of melittin. 30 hydrolysis with highly purified trypsin. Z Naturforsch 1969; 24: 264-265.
  19. Kim HW, Kwon YB, Ham TW, Rho DH, Yoon SY, Kang SY, Yang IS, Han HJ, Lee HJ, Beitz AJ, Lee JH. General pharmacological profiles of bee venom and its water soluble fractions in rodent models. J Vet Sci 2004; 5: 309-318.
  20. Kim J-H, Lee HY, Kim MH, Han TS, Cho KR, Kim G, Choi SH. Antinociceptive efficacy of Korean bee venom in the Abdominal Pain of the the mouse. J Vet Clin 2007; 24: 320-324.
  21. Kwon YB, Kang MS, Han HJ, Beitz AJ, Lee JH.. Visceral antinociception produced by bee venom stimulation of the Zhongwan acupuncture point in mice: role of alpha(2) adrenoceptors. Neurosci Lett 2001; 308: 133-137. https://doi.org/10.1016/S0304-3940(01)01989-9
  22. Kwon YB, Lee JD, Lee HJ, Han HJ, Mar WC, Kang SK, Beitz AJ, Lee JH. Bee venom injection into an acupuncture point reduces arthritis associated edema and nociceptive responses. Pain 2001; 90: 271-280. https://doi.org/10.1016/S0304-3959(00)00412-7
  23. Kwon YB, Lee JD, Lee HJ, Han HJ, Mar WC, Kang SK, Yoon OB, Beitz AJ, Lee JH. The water-soluble fraction of bee venom produces antinociceptive and anti-inflammatory effects on rheumatoid arthritis in rats. Life Sci 2002; 71: 191-204. https://doi.org/10.1016/S0024-3205(02)01617-X
  24. Landucci EC, Toyama M, Marangoni S, Oliveira B, Cirino G, Antunes E, de Nucci G. 2000. Effect of crotapotin and heparin on the rat pawoedema induced by different secretory phospholipase A2. Toxicon 2000; 38: 199-208. https://doi.org/10.1016/S0041-0101(99)00143-9
  25. Lariviere WR, Melzack R. The bee venom test: a new tonic-pain test. Pain 1996; 66: 271-277. https://doi.org/10.1016/0304-3959(96)03075-8
  26. Lee EG, Kim J-H, Han TS, Cho KR, Kim MH, Park WD, Han HJ, Kim G, Choi SH. Antinociceptive efficacy of Korean bee venom in the rat formalin test. J Vet Clin 2007; 24: 499-502.
  27. Ortiz MI, Granados-Soto V, Castaneda-Hermandez G. The NO-cGMP-K+ channel pathway participates in the antinociceptive effect of diclofenac, but not of indomethacin. Pharmacol Biochem Behav 2003; 76: 187-195. https://doi.org/10.1016/S0091-3057(03)00214-4
  28. Owen MD, Bridges AR. Aging in the venom glands of queen and worker honey bees (Apis mellifera L.) some morphological and chemical observations. Toxicon 1976; 14: 1-5. https://doi.org/10.1016/0041-0101(76)90113-6
  29. Owen MD. Venom replenishment, as indicated by histamine, in honey bee (Apis mellifera L.) venom. J Insect Physiol 1978; 24: 433-437. https://doi.org/10.1016/0022-1910(78)90086-0
  30. Peck ML, O'Connor R, Johnson TJ, Isabell AF, Martell AE, McLendon G, Neff RD, Wright DA. Radioprotective potential and chelating properties of glycylhisamine and analog of histamine terminal peptides found in bee venom. Toxicon 1978; 16: 690-694. https://doi.org/10.1016/0041-0101(78)90199-X
  31. Rang HP, Bevan S, Dray A. Chemical activation of nociceptive peripheral neurons. Br Med Bull 1991; 47: 534-548.
  32. Rudenko SV, Nipot EE. Modulation of melittin-induced hemolysis of erythrocytes. Biokhimiia 1996; 61: 2116-2124.
  33. Steiner H, Hultmark D, Engstrom A, Bennich H, Boman HG. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 1981; 292: 246-248. https://doi.org/10.1038/292246a0
  34. Tjolsen A, Berge OG, Hunskaar S, Rosland JH, Hole K. The formalin test: an evaluation of the method. Pain 1992; 51: 5-17. https://doi.org/10.1016/0304-3959(92)90003-T
  35. Vick JA, Brooks B, Shipman W. Therapeutic applications of bee venom and its components in the dog. Am Bee J 1972; 11: 414-416.
  36. Wheeler-Aceto, H, Porreca F, Cowan A. The rat paw formalin test: comparison of noxious agents. Pain 1990; 40: 229-238. https://doi.org/10.1016/0304-3959(90)90073-M