Preparation and Its Stability of a Coenzyme Q10 Nanoemulsion by High Pressure Homogenization with Different Valve Type Conditions

초고압균질기 밸브 타입에 따른 coenzyme Q10 나노에멀젼의 제조 및 안정성

  • Received : 2010.05.06
  • Accepted : 2010.07.27
  • Published : 2010.10.31

Abstract

A coenzyme Q10 nanoemulsion was prepared using high pressure homogenization with different valve type conditions (A, B, and C) and cycle numbers (1, 2, and 3). The particle size, transmittance, zeta potential, and coenzyme Q10 content of the prepared coenzyme Q10 nanoemulsion were measured. The stability of the prepared coenzyme Q10 nanoemulsion was evaluated on heating ($95^{\circ}C$), freezing ($-20^{\circ}C$), and different pH (2-10) conditions. Also, the prepared coenzyme Q10 nanoemulsion was stored at different temperatures of 4, 25, and $40^{\circ}C$ for 12 weeks to evaluate its storage stability. In this study, the optimal conditions of high pressure homogenization for the preparation of a coenzyme Q10 nanoemulsion were identified to be 150 MPa, C valve, and a cycle number of 3. The results showed that the prepared coenzyme Q10 nanoemulsion had an average particle size of 40 nm, generated no deposits or floating matter when stored at either 4 or $25^{\circ}C$ for 12 weeks, and displayed excellent dispersibility and transparency when processed at different pHs (4-10) or heating ($95^{\circ}C$) and, freezing ($-20^{\circ}C$) conditions. Our results indicated that a coenzyme Q10 nanoemulsion prepared by high pressure homogenization can be used for preparing beverages in the food industry.

본 연구에서는 coenzyme $Q_{10}$을 나노에멀젼화 하기 위해 초고압균질기를 이용하여 3가지 다른 형태의 밸브를 대상으로 평가를 진행하였으며, 선정된 밸브를 사용하여 제조된 coenzyme $Q_{10}$ 나노에멀젼의 품질 특성 및 안정성 평가를 하였다. 초고압균질기를 이용한 coenzyme $Q_{10}$ 나노에멀젼 제조 시 최적 조건은 150MPa, C 밸브, 통과 횟수 3회이었다. 제조된 나노에멀젼은 평균입자 크기가 40 nm, 제타 전위 값이 -57 mV을 나타내어 콜로이드 상태가 충분히 안정하다고 볼 수 있었다. 또한 수용액에 빠르게 분산되었으며, 이때 coenzyme $Q_{10}$ 100 mg을 함유한 증류수100 mL의 투과도 값이 90(%T)로 투명한 용액을 얻을 수 있었다. 제조한 coenzyme $Q_{10}$ 나노에멀젼은 $4^{\circ}C$$25^{\circ}C$에서 12주 동안 보존하여도 침전 또는 부유물을 발생시키지 않았고 coenzyme $Q_{10}$ 함량이 변하지 않았으며, 10일간의 동결처리 후에도 안정하였다. pH 2 용액을 제외하고는 pH(4-10) 처리와 열($95^{\circ}C$)처리 및 동결($-20^{\circ}C$)처리 시에도 안정하였다. 따라서 제조된 coenzyme $Q_{10}$ 나노에멀젼은 액체 형태 등 다양한 식품에 적용할 수 있는 가능성을 확보하였으며, 유통시에는 상온보다는 냉장 보관이 더 적합 할 것으로 판단된다.

Keywords

References

  1. Mendoza-Vega O, Sabatie S, Brown W. Industrial production of heterologous proteins by fed-batch cultures of the yeast Sacharomyces cerevisiae. FEMS Microbiol. 15: 369-410 (1994) https://doi.org/10.1111/j.1574-6976.1994.tb00146.x
  2. Sharma S, Kheradpezhou M, Shavali S, El-Refaey H, Eken J, Haren C, Ebadi M. Neuroprotective actions of coenzyme $Q_{10}$ in Parkinson's disease. Method Enzymol. 382: 488-509 (2004) https://doi.org/10.1016/S0076-6879(04)82027-5
  3. Ikematsu H, Nakamura K, Harashima SI, Fujii K, Fukutomi N. Safety assessment of coenzyme $Q_{10}$ (Kaneka $Q_{10}$) in healthy subjects: A double-blind, randomized, placebo-controlled trial. Regul. Toxicol. Pharm. 44: 212-218 (2006) https://doi.org/10.1016/j.yrtph.2005.12.002
  4. Genova ML, Bonacorsi E, D'Aurelio M, Formiggini G, Nardo B, Cuccomarino S, Turi PM, Pich M, Lenaz G, Bovina C. Protective effect of exogenous coenzymeQ in rats subjected to partial hepatic ischemia and reperfusion. Biofactors 9: 345-349 (1999) https://doi.org/10.1002/biof.5520090234
  5. Bliznakov EG. Coenzyme $Q_{10}$ in experimental infections and neoplasia. Else. Sci. 5: 73-89 (1997)
  6. Ernster L, Forsmark-Andree P. Ubiquinol an endogenous antioxidant in aerobic organism. Clin. Investigator. 71: 60-65 (1986)
  7. Folkers K, Littarru GP, Ho L, Runge TM, Havanonda S, Cooley D. Evidence for a deficiency of coenzyme $Q_{10}$ in human heart disease. Int. J. Vitam. Nutr. Res. 4: 380-390 (1970)
  8. Nakamura R, Littarru GP, Folfers K, Wilkinson EG. Deficiency of coenzyme Q in gingiva of patients with periodontal disease. Int. J. Vitam. Nutr. Res. 43: 84-92 (1973)
  9. Folkers K, Langsjoen P, Nara Y, Muratsu K, Komorowski J, Richardson PC, Smith TH. Biochemical deficiencies of coenzyme $Q_{10}$ in HIV-infection and exploratory treatment. Biochem. Bioph. Res. Co. 153: 888-896 (1988) https://doi.org/10.1016/S0006-291X(88)81179-3
  10. Kawamukai M. Rcent advance of the biosynthesis and the function of ubiquinone. Seikagaku 70: 1344-1349 (1998)
  11. Benita S, Levy MY. Submicron emulsions as colloidal drug carriers for intravenous administration: comprehensive physicochemical characterization. J. Pharm. Sci. 82: 1069-1079 (1993) https://doi.org/10.1002/jps.2600821102
  12. Schwarz JS, Weisspapir MR, Friedman DI. Enhanced transdermal delivery of diazepam by submicron emulsion (SME) creams. Pharm. Res. 12: 687-692 (1995) https://doi.org/10.1023/A:1016255408348
  13. Friedman DI, Schwarz JS, Weisspapir MR. Submicron emulsions as vehicle for improved transdermal delivery of diazepam. Proc. Int. Symp. Control. Rel Bioact Mater. 21: 457-458 (1994)
  14. Chung WY, Kim KS, Lee CK, Yoon MS. Nano-emulsion composition using the high-pressure homogenizer. Korea Patent 10-0071572 (2007)
  15. Moon BK, Kim SI, Yoo JS, Jeon JW. Compositions containing coenzyme Q10. Korea Patent 10-0786884 (2007)
  16. Choi AJ, Kim CJ, Cho YJ, Hwang JK, Kim CT. Effects of surfactants on the formation and stability of capsaicin-loaded nanoemulsions. Food Sci. Biotechnol. 18: 1161-1172 (2009)
  17. Spernath A, Yaghmur A, Aserin A, Hoffman R, Garti N. Foodgrade microemulsions based on nonionic emulsifiers: Media to enhance lycopene solubilization. J. Agr. Food Chem. 50: 6917-6922 (2002) https://doi.org/10.1021/jf025762n
  18. El-Aasser MS, Sudol ED. Miniemulsions: Overview of research and applications. J. Coat. Technol. Res. 1: 21-31 (2004)
  19. El-Aasser MS, Lack CD, Vanderhoff JW, Fowkes FM. The miniemulsification process-different from of spontaneous emulsification. Colloid Surface 29: 103-118 (1988) https://doi.org/10.1016/0166-6622(88)80174-4
  20. Sing AJF, Graciaa A, Lachaise J, Brochette P, Salager JL. Interactions and coalescence of nanodroplets in translucent O/W emulsions. Colloid Surface A 152: 31-39 (1999) https://doi.org/10.1016/S0927-7757(98)00622-0
  21. Rang MJ, Miller CA. Spontaneous emulsification of oils containing hydrocarbon, nonionic surfactant, and oleyl alcohol. J. Colloid Interf. Sci. 209: 179-192 (1999) https://doi.org/10.1006/jcis.1998.5865
  22. Wlstra P. Principles of emulsion formation. Chem. Eng. Sci. 48: 333-351 (1993) https://doi.org/10.1016/0009-2509(93)80021-H
  23. Shafiq S, Shakell F, Talegaonkar S, Ali J, Baboota S, Ahuja A, Khar RK, Ali M. Formulation development and optimization using nanoemulsion technique: A technical note. AAPS Pharm- SciTech 8(2): E1-E6 (2007) https://doi.org/10.1208/pt0802027
  24. Pons R, Carrera I, Caelles J, Rouch J, Panizza P. Formation and properties of miniemulsions formed by microemulsions dilution. Adv. Colloid Interface 106: 129-146 (2003) https://doi.org/10.1016/S0001-8686(03)00108-8
  25. Izquierdo P, Esquena J, Tadros ThF, Dederen JC, Feng J, Garcia- Celma MJ, Azemar N, Solans C. Phase behavior and nano-emulsion formation by the phase inversion temperature method. Langmuir 20: 6594-6598 (2004) https://doi.org/10.1021/la049566h
  26. Anton N, Benoit JP, Saulnier P. Design and production of nanoparticles formulated from nano-emulsion templates. J. Control. Release 128: 185-199 (2008) https://doi.org/10.1016/j.jconrel.2008.02.007
  27. Forgiarini A, Esquena J, Gonzalez C, Solans C. Formation of nano-emulsions by low-energy emulsification methods at constant temperature. Langmuir 17: 2076-2083 (2001) https://doi.org/10.1021/la001362n
  28. Jafari SM, He Y, Bhandari B. Nano-emulsion production by sonication and microfluidizatio-A comparison. Int. J. Food Prop. 9: 475-485 (2006) https://doi.org/10.1080/10942910600596464
  29. Tan CP, Nakajima M. $\beta$-Carotene nanodispersions: Preparation, characterization and stability evaluation. Food Chem. 92: 661-671 (2005) https://doi.org/10.1016/j.foodchem.2004.08.044
  30. Maa YF, Hsu CC. Performance of sonication and microfluidisation for liquideliquid emulsification. Pharm. Dev. Technol. 4: 233-240 (1998)
  31. Asua JM. Microemulsion polymerization. Prog. Polym. Sci. 27: 1283-1346 (2002) https://doi.org/10.1016/S0079-6700(02)00010-2
  32. Strawbridge KB, Ray E, Hallett FR, Tosh SM, Dalgleish DG. Measurement of particle size distributions in milk homogenized by a microfluidizer: Estimation of populations of paricles with radii less than 100 nm. J. Colloid Interf. Sci. 171: 392-398 (1995) https://doi.org/10.1006/jcis.1995.1195
  33. Ramon BR, Manuel S. Factors involved in the production of liposomes with a high-pressure homogenizer. Int. J. Pharm. 213: 175-186 (2001) https://doi.org/10.1016/S0378-5173(00)00661-X
  34. Petrowski GE. Pasteurized frozen whole egg and yolk for mayonnaise production. Adv. Food Res. 22: 309-359 (1976) https://doi.org/10.1016/S0065-2628(08)60341-9
  35. Tadros T, Izquierdo P, Esquena J, Solans C. Formation and stability of nano-emulsions. Adv. Colloid Interfac. 108: 303-318 (2004) https://doi.org/10.1016/j.cis.2003.10.023
  36. Kim CT, Kim CJ, Cho YJ, Kim YH, Kim IH, Choi AJ. Novel fabrication technology of food nanoemulsions. Korean J. Food Sci. Technol. 41: 33-45 (2008)
  37. Sherman P. Rheology of dispersed systems. pp. 97-183. In: Industrial Rheology. Academic Press Inc., London, UK (1970)
  38. Shields M, Ellis R, Saunders BR. A creaming study of weakly flocculated and depletion flocculated oil-in-water emulsions. Colloid Surf A 178: 265-276. (2001) https://doi.org/10.1016/S0927-7757(00)00715-9
  39. Hong ST. Changes in the stability properties of methylcellulose emulsions as affected by competitive adsorption between methylcellulose and Tween 20. Korean J. Food Sci. Technol. 37: 1278-1286 (2008)
  40. Hong ST. Influence of methylcellulose on properties of $\beta$-Lactoglobulin emulsions. Korean J. Food Eng. Prog. 12: 121-127 (2008)