Properties of Extremely Low Frequency Electromagnetic Fields and their Effects on Mouse Testicular Germ Cells

  • Kim, Yeon-Sook (Department of Dental Hygiene, College of Health, Cheongju University) ;
  • Lee, Suk-Keun (Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University)
  • Received : 2010.07.14
  • Accepted : 2010.11.12
  • Published : 2010.12.31

Abstract

To evaluate the biohazard properties of an extremely low frequency electromagnetic field (ELF-EMF), we explored the physical properties of the ELF-EMF that generates the electric current induction in the secondary coil from the chamber of a primary solenoid coil. We subsequently explored the biological effects of a strong alternating electromagnetic field (EMF), ranging from 730-960 Gauss, on the mouse testis. Mice were exposed to an alternating EMF field induced by a rectangular electric current at 1, 7, 20, 40, and 80 Hertz, for 1, 3, 5, and 7 hours. The mouse testes were examined for proliferative activity and apoptosis using the in situ terminal deoxynucleotidyl transferase (TdT) method and by immunostaining of proliferating cell nuclear antigen (PCNA), respectively. We found that the electric currentm induction increased in the 6-8 Hertz range, and that exposure to an ELF-EMF induced the apoptosis of mouse spermatocytes. In situ TdT staining was found to be most prominent in 7 Hertz group, and gradually reduced in the 20, 40, and 80 Hertz groups. These data suggest that a strong EMF can induce reproductive cell death within a short time, and the harmful effects of the EMF are maximal at low frequency alternating EMFs.

Keywords

References

  1. Adey WR. Frequency and power windowing in tissue interactions with weak electromagnetic fields. Proceedings of the Institute of Electrical and Electronics Engineers. 1980;68: 119-25. https://doi.org/10.1109/PROC.1980.11591
  2. Ayrapetyan SN, Grigorian KV, Avanesian ASStamboltsian KV. Magnetic fields alter electrical properties of solutions and their physiological effects. Bioelectromagnetics. 1994; 15:133-42. https://doi.org/10.1002/bem.2250150205
  3. Bassett CA. The development and application of pulsed electromagnetic fields (PEMFs) for ununited fractures and arthrodeses. Orthop Clin North Am. 1984;15:61-87.
  4. Bawin SM, Adey WRSabbot IM. Ionic factors in release of 45Ca2+ from chicken cerebral tissue by electromagnetic fields. Proc Natl Acad Sci USA. 1978;75:6314-8. https://doi.org/10.1073/pnas.75.12.6314
  5. Blackman CF, Benane SG, Elder JA, House DE, Lampe JAFauk JM. Induction of calcium-ion efflux from brain tissue by radio-frequency radiation: effects of modulation frequency and field strength. Radio Science. 1979;14:93-8. https://doi.org/10.1029/RS014i06Sp00093
  6. Blackman CF, Benane SG, House DEJoines WT. Effects of ELF (1-120 Hz) and modulated (50 Hz) RF fields on the efflux of calcium ions from brain tissue in vitro. Bioelectromagnetics. 1985;6:1-11. https://doi.org/10.1002/bem.2250060102
  7. Buemi M, Marino D, Di Pasquale G, Floccari F, Senatore M, Aloisi C, Grasso F, Mondio G, Perillo P, Frisina NCorica F. Cell proliferation/cell death balance in renal cell cultures after exposure to a static magnetic field. Nephron. 2001;87: 269-73. https://doi.org/10.1159/000045925
  8. Carratore RD, Morichetti E, Croce CDBronzetti G. Effect of magnetic fields on rodent monooxygenase enzymes. Bioelectromagnetics. 1995;16:324-9. https://doi.org/10.1002/bem.2250160509
  9. Cavol AV, Wamil AW, Holcomb RRMclean KJ. Measurement and analysis of static magnetic fields that block action potentials in cultures neurons. Bioelectomagnetics. 1995;16: 197-206. https://doi.org/10.1002/bem.2250160308
  10. Chiang H, Wu RY, Shao BJ, Fu YD, Yao GDLu DJ. Pulsed magnetic field from video display terminals enhances teratogenic effects of cytosine arabinoside in mice. Bioelectromagnetics. 1995;16:70-4. https://doi.org/10.1002/bem.2250160113
  11. Clermont Y. Kinetics of spermatogenesis in mammals: Seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev. 1972;52:198-236. https://doi.org/10.1152/physrev.1972.52.1.198
  12. De Kretser DMKerr JB. The cytology of testis. Raven Press, New York 1988.
  13. De Vita R, Cavallo D, Raganella L, Eleuteri P, Grollino MGCalugi A. Effect of 50 Hz magnetic fields on mouse spermatogenesis monitored by flow cytometric analysis. Bioelectromagnetics. 1995;16:330-4. https://doi.org/10.1002/bem.2250160510
  14. Diniz P, Shomura K, Soejima KIto G. Effects of pulsed electromagnetic field (PEMF) stimulation on bone tissue like formation are dependent on the maturation stages of the osteoblasts. Bioelectromagnetics. 2002;23:398-405. https://doi.org/10.1002/bem.10032
  15. Engstroem S. Dynamic properties of Lednev's parametric resonance mechanism. Bioelectromagnetics. 1996;17:58-70. https://doi.org/10.1002/(SICI)1521-186X(1996)17:1<58::AID-BEM8>3.0.CO;2-5
  16. Gluck B, Guntzschel VBerg H. Inhibition of proliferation of human lymphoma cells U937 by a 50 Hz electromagnetic field. Cell Mol Biol (Noisy-le-grand). 2001;47:OL115-7.
  17. Grant G, Cadossi RSteinberg G. Protection against focal cerebral ischemia following exposure to a pulsed electromagnetic field. Bioelectromagnetics. 1994;15:205-16. https://doi.org/10.1002/bem.2250150305
  18. Grota LJ, Reiter RJ, Keng PMichaelson S. Electric field exposure alters serum melatonin but not pineal melatonin synthesis in male rats. Bioelectromagnetics. 1995;15:4237.
  19. Guzelsu N, Salkind AJ, Shen X, Patel U, Thaler SBerg RA. Effect of electromagnetic stimulation with different waveforms on cultured chick tendon fibroblasts. Bioelectromagnetics. 1994;15:115-31. https://doi.org/10.1002/bem.2250150204
  20. Inoue N, Ohnishi I, Chen D, Deitz LW, Schwardt JDChao EY. Effect of pulsed electromagnetic fields (PEMF) on late-phase osteotomy gap healing in a canine tibial model. J Orthop Res. 2002;20:1106-14. https://doi.org/10.1016/S0736-0266(02)00031-1
  21. Johnson L. Efficiency of spermatogenesis. Microscopy Research and Technique. 1995;32:385-422. https://doi.org/10.1002/jemt.1070320504
  22. Johnson MT, Vanscoy-Cornett A, Vesper DN, Swez JA, Chamberlain JK, Seaward MBNindl G. Electromagnetic fields used clinically to improve bone healing also impact lymphocyte proliferation in vitro. Biomed Sci Instrum. 2001;37:215-20.
  23. Kirschvink JL, Kobayashi-Kirschvink A, Diaz-Ricci JCKirschvink SJ. Magnetite in human tissues: a mechanism for the biological effects of weak ELF magnetic fields. Bioelectromagnetics (Suppl). 1992;1:101-13.
  24. Ko SH, Lee JHKim SH. The Effects of Mechanical Strain on Bone Cell Proliferation and Recruitment Induced by Osteocytes. Int J Oral Biology. 2008;33:179-86.
  25. Kolosova LI, Akoev GN, Avelev VD, Riabchikova OVBaba KS. Effect of low-intensity millimeter wave electromagnetic radiation on regeneration of the sciatic nerve in rats. Bioelectromagnetics. 1996;17:44-7. https://doi.org/10.1002/(SICI)1521-186X(1996)17:1<44::AID-BEM6>3.0.CO;2-6
  26. Lee JM, Stormshak F, Thompson JM, Hess DLFoster DL. Melatonin and puberty in female lambs exposed to EMF: A replicate study. Bioelectromagnetics. 1995;16:119-23.
  27. Lee SK, Chung EY, Kim GJ, Song DB, Kim JHChi JG. An effective role of pulsed magnetic field for bony decalcification. Kor J Pathol. 1993;27:125-33.
  28. Li DKNeutra RR. Magnetic fields and miscarriage. Epidemiology. 2002;13:237-8. https://doi.org/10.1097/00001648-200203000-00024
  29. Lindstroem E, Lindstroem P, Berglund A, Lundgren EMild KH. Intracellular calcium oscillation in a T-cell line after exposure to extremely-low-frequency magnetic fields with variable frequencies and flux densities. Bioelectromagnetics. 1995;16:41-7. https://doi.org/10.1002/bem.2250160110
  30. Malko JA, Constantinidis I, Dillehay DFajman WA. Search for influence of 1.5 Tesla magnetic field on growth of yeast cells. Bioelectromagnetics. 1994;15:495-501. https://doi.org/10.1002/bem.2250150602
  31. Margonato V, Nicolini P, Conti R, Zecca L, Veicsteinas ACerretelli P. Biologic effects of prolonged exposure to ELF electromagnetic fields in rats: II. 50 Hz magnetic fields. Bioelectromagnetics. 1995;16:343-55. https://doi.org/10.1002/bem.2250160602
  32. Orr JL, Rogers WRSmith HD. Exposure of baboons to combined 60 Hz electric and magnetic fields does not produce work stoppage or affect operant performance on a match-tosample task. Bioelectromagnetics. 1995;3:61-70.
  33. Panagopoulos D, Karabarbounis AMargaritis L. Mechanism for action of electromagnetic fields on cells. Biochem Biophys Res Commun. 2002;298:95. https://doi.org/10.1016/S0006-291X(02)02393-8
  34. Panagopoulos DJ, Messini N, Karabarbounis A, Philippetis ALMargaritis LH. A mechanism for action of oscillating electric fields on cells. Biochem Biophys Res Commun. 2000; 272:634-40. https://doi.org/10.1006/bbrc.2000.2746
  35. Parafiniuk M, Gorczynska E, Gutsch AParafiniuk W. Effect of constant magnetic field on the liver of guinea pig. Electron microscopic studies. Folia Histochem Cytobiol. 1992;30: 119-23.
  36. Portet RTCabanes J. Development of young rats and rabbits exposed to strong electric field. Bioelectromagnetics. 1988;9:95-104. https://doi.org/10.1002/bem.2250090109
  37. Robison JG, Pendleton AR, Monson KO, Murray BKO'Neill KL. Decreased DNA repair rates and protection from heat induced apoptosis mediated by electromagnetic field exposure. Bioelectromagnetics. 2002;23:106-12. https://doi.org/10.1002/bem.103
  38. Rogers WR, Orr JLSmith HD. Nonhuman primates will not respond to turn off strong 60 Hz electric fields. Bioelectromagnetics. 1995;3:48-60.
  39. Rogers WR, Reiter RJ, Barlow-Walden L, Smith HDOrr JL. Regularly scheduled, day-time, slow onset 60 Hz electric and magnetic field exposure does not depress serum melatonin concentration in nonhuman primates. Bioelectromagnetics, Supplement. 1995;3:111-8.
  40. Ruiz Gomez MJ, De la Pena L, Pastor JM, Martinez Morillo MGil L. 25 Hz electromagnetic field exposure has no effect on cell cycle distribution and apoptosis in U-937 and HCA- 2/1cch cells. Bioelectrochemistry. 2001;53:137-40. https://doi.org/10.1016/S0302-4598(00)00119-7
  41. Saunders RDJefferys JG. Weak electric field interactions in the central nervous system. Health Phys. 2002;83:366-75. https://doi.org/10.1097/00004032-200209000-00006
  42. Savitz DAAnanth CV. Residential magnetic fields, wire codes, and pregnancy outcome. Bioelectromagnetics. 1994;15:271-3. https://doi.org/10.1002/bem.2250150309
  43. Sienkiewicz Z, Robbins L, Haylock RGESaunders RD. Effects of prenatal exposure to 50 Hz magnetic fields on development in mice: ll. Postnatal development and behavior. Bioelectromagnetics. 1994;15:363-75. https://doi.org/10.1002/bem.2250150410
  44. Smith A, Bugge HP, Berg KA, Moller OHansson V. Seasonal changes in testicular structure and function in the blue fox (Alopex lagopus), as quantified by morphometric analysis and measurement of adenylate cyclase activity. Int J Androl. 1986;9:53-66. https://doi.org/10.1111/j.1365-2605.1986.tb00867.x
  45. Smith AJ, Clausen OP, Kirkhus B, Jahnsen T, Moller OMHansson V. Seasonal changes in spermatogenesis in the blue fox (Alopex lagopus), quantified by DNA flow cytometry and measurement of soluble Mn2 -dependent adenylate cyclase activity. J Reprod Fertil. 1984;72:453-61. https://doi.org/10.1530/jrf.0.0720453
  46. Spadinger I, Agnew DPalcic B. 3T3 cell motility and morphology before, during, and after exposure to extremely-lowfrequency magnetic fields. Bioelectromagnetics. 1995;16:178-87. https://doi.org/10.1002/bem.2250160306
  47. Svedenstael B-MJohanson K-J. Fetal loss in mice exposed to magnetic fields during early pregnancy. Bioelectromagnetics. 1995;16:284-9. https://doi.org/10.1002/bem.2250160503
  48. Takano-Yamamoto T, Kawakami MSakuda M. Effect of a pulsing electromagnetic field on demineralized bone-matrixinduced bone formation in a bony defect in the premaxilla of rats. J Dent Res. 1992;71:1920-5. https://doi.org/10.1177/00220345920710121301
  49. Tofani S, Barone D, Cintorino M, de Santi MM, Ferrara A, Orlassino R, Ossola P, Peroglio F, Rolfo KRonchetto F. Static and ELF magnetic fields induce tumor growth inhibition and apoptosis. Bioelectromagnetics. 2001;22:419-28. https://doi.org/10.1002/bem.69