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1. Introduction

Piezoelectric material based actuators have shown

good potential for various applications, such as

trailing-edge flaps for rotary-wing vehicles. These

piezoelectric actuators are compact, high force and

high bandwidth devices, but can only provide a

limited stroke. This limitation can be critical in cases

where large trailing-edge flap deflections or large size

rotor blades are needed. Efforts to improve the

piezoelectric actuator performance have been carried

out by researchers in developing amplification

mechanisms of various types.

To advance the state of the art and further enhance

the authority of piezoelectric material-based actuation

systems, various new ideas have been explored in

recent years.  A novel motion amplifier has been

developed by Jiang and Mockensturm to increase the

output work transferred through a compliant

structure.  The concept is to induce elastic and

dynamic instability of an axially driven buckling

beam to amplify the actuator motion. Another

innovative idea is to achieve a high-authority

piezoelectric resonant actuation system via

mechanical and electrical tailoring. 

From reviewing the current buckling beam motion

amplifier and resonant actuator concepts, it is
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recognized that an approach that combine the two

ideas could further advance the state of the art in

achieving high authority, light weight and compact

piezoelectric actuators. In other words, the aim here is

to seek solutions that can effectively tailor and

control the piezoelectric/buckling beam motion

amplifier element to operate as a resonant actuation

system (Fig. 1).  In this case, resonance means that

the operating frequency is at or near the natural

frequency of the linearized system, which will cause

significant amplification effect of the nonlinear

motion amplifier.

2. System Description

A buckling beam actuator is illustrated in Fig. 2,

where the hinged-clamped beam is attached to a

piezoelectric stack actuator. The beam has an initial

geometric imperfection, , and it is under the axial

static and dynamic loading, 

that is produced by both the preloading and the

piezoelectric stack actuator, at the clamped end.

Assuming that the beam is a homogeneous one-

dimensional elastic body, the total potential energy,

which includes the strain energy due to bending and

the potential energy of the applied axial load at

, is expressed as:

where is the Young’s modulus, and is the

moment of inertia of the cross-section of the beam.

By taking into account Eq. (1), neglecting rotary

inertia and axial dynamics, and applying the ordering

scheme, one can derive the following equation.

where the superscript ‘ ’indicates the initial

imperfection, the overdot represents the derivative

with respect to the nondimensionalized time, , and

the prime denotes the derivative with respect to the

normalized spatial coordinate, .  The correspondingξ
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Fig. 1  A buckling beam motion amplifier with a feedback linearization control
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boundary conditions are read as:

The post-buckling behavior of the beam needs to be

analyzed in order to characterize the beam dynamics

around the static equilibrium. The governing equation

of the buckling problem can be obtained from Eq. (2)

by dropping the time derivatives and the dynamic

axial load, and the boundary conditions from Eq. (3).

The Galerkin method is then adopted to solve the

nonlinear buckling equation. It is assumed that the

geometric imperfection is given by the same buckling

mode shape. To obtain the governing equations of

beam dynamics around the static equilibrium, we let

the transverse displacement be

where is the statically deformed configuration

corresponding to the static compressive load .

denotes a time-dependent perturbation around

the deformed and/or buckled configuration. 

Substituting Eq. (4) into Eq. (2) yields the nonlinear

dynamic equation

where , and are

differential operators. Equation (5) forms a nonlinear

Mathieu-type equation. The Galerkin method is again

employed to discretize the nonlinear equations of

motion. Subsequently a single mode approximation is

applied to the system equation, and the modal

equation is then summarized as follows:

where denotes the first natural frequency.

Calculations of the modal damping ratio, ,

parametric excitation magnitude , and externalfi
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Fig. 2  Schematic of the piezoelectric buckling beam actuation system
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excitation magnitude are straightforward. 

It should be noted here that a single-mode

descretization could yield quantitatively as well as

qualitatively erroneous static and dynamic responses

for relatively high buckling levels ( ). In this

article, however, we are interested in the vicinity of

the first critical buckling load, where . Thus a

single-mode descretization gives us a good

approximation, especially when initial imperfections

are considered. Henceforth, a Mathieu-type nonlinear

dynamic model derived herein, Eq. (6), will be used

to analyze the nonlinear dynamic behavior of the

post-buckled beam under axial dynamic loads. 

3. Output Feedback Linearization
Control Algorithm

To obtain the desired output of the beam (the

rotation angle at the hinged end, ) at the

operating frequency, the piezoelectric stack actuator

needs to be effectively controlled. The post-buckled

beam dynamics together with feedback linearization

control algorithm based on a “high-gain estimator”

can be used for such purpose. 

It is assumed that the piezoelectric actuator

dynamics is negligible since its natural frequency is

much higher than that of the post-buckled beam, so

that the actuation voltage is linearly proportional to

the axial dynamic load. 

One can obtain a corresponding state-space form of

Eq. (6) as:

where is the nonlinear function including the

damping and forcing terms, is the axial dynamic

control load, and represents the nonlinear

geometric shape of the post-buckled beam. 

In general, the nonlinear function has

significant uncertainties. It, therefore, cannot be

directly used in a controller design. These

uncertainties can be lumped into a new state and

treat it as unknown. Then Eq. (7) becomes

where 

The control law for a feedback linearization based

on estimated state variables is now read as:

where 

Here it is assumed that an estimation of is

available from feedback (i.e., state variable), so

that it can be compensated by the control even if

there are modeling errors in geometric stiffness terms

such as and . 

Now one can use the feedback control law, Eq.

(10), to suppress the undesirable nonlinear dynamic

behaviors. It should be noted here that the large

feedback control input to the nonlinear dynamic
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system can induce the so-called peaking

phenomenon, especially when high-gain observers

are employed. This leads to system instabilities. In

addition to these instabilities, the current dynamic

system includes parametric excitations, and the

feedback control input contributes to these excitations

via the nonlinear geometric stiffness, . To eliminate

these effects, the feedback control law is modified by

a saturation function of which is defined as

follows:

4. Concluding Remarks

The time response of a controlled system, the

deviation from the desired shaft angles and the

control signal are presented in Fig. 3. One can see

that shaft angles of 2 to 10 degrees are achieved

throughout the time period. Notice here that shaft

angles are shifted from 4 degrees to 2~10 degrees

due to the static shaft angle (6 degrees) induced from

the static compressive load . As shown in Figure 8,

the high authority resonant actuation can be achieved

by the feedback linearization control based on a high-

gain estimator for a piezoelectric buckling-beam

motion amplifier.
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Fig. 3  Time response of controlled system, error from desired shaft angle, and control input with
frequency sweep down
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