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Abstract 
 

The reciprocal virtue of peer-to-peer networking has stimulated an explosion of peer 
population and service capacity, ensuring rapid content distribution in peer-to-peer networks. 
Critical issues such as peer churn, free riding, and skewed workload significantly affect 
performance results such as service agility, fairness, and resource utilization. To resolve these 
problems systematically, this study proposes a peer assignment scheme that supports fair 
peer-to-peer file sharing applications. The proposed scheme exploits the peer duality of both 
server-oriented peer capacity and client-oriented peer contribution. Accordingly, the system 
server can prioritize download requests and appropriately assign server peers to uploading file 
objects. Several functional extensions, including peer substitution and elimination, bandwidth 
adjustment, and distributed modification, help cope with subtle situations of service starvation 
and download blocking, and hence make the system design robust and amenable. Simulation 
results show this design is examined under both centralized and distributed peer-to-peer 
environments. Performance results confirm that the proposed mechanisms are simple but 
effective in maintaining service agility and fairness, without loss of overall service capacity in 
peer-to-peer files sharing systems. 
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1. Introduction 

Peer-to-peer (P2P) networking technology has recently emerged as a new variant of the 
distributed computing paradigm for building distributed networked applications. With the 
proliferation of P2P applications, a major portion of today’s Internet traffic is generated by 
P2P file sharing applications [1]. P2P networking differs from traditional client/server 
networking in several aspects, including peer duality, service capacity, peer churn, overlay 
organization, free riding, etc. Perhaps the intrinsic difference is peer duality, in that each peer 
plays a dual role of both service provider (server) and a consumer (client) of the implemented 
service [2]. In many P2P file sharing applications [3], like Napster, Gnutella, KaZaA, 
Morpheus, eDonkey, and BitTorrent, a peer requests files from its peers, and also stores and 
serves files to its peers. Increasing the peer population not only increases the workload, but 
also produces a concomitant increase in service capacity to process the request workload [4]. 
In a traditional network, however, clients and servers are distinct. An increase in the client 
population simply increases the workload, inducing the scalability problem and degrading 
performance. Thus, peer duality distinguishes P2P networking from traditional client/server 
networking. 

Peer churn, which represents the dynamics of peer participation in a system1, significantly 
influences overlay design, resiliency, and assessment [5][6]. Peers in a system cooperate to run 
an application-level overlay network [7] that provides connectivity, signal messaging, routing, 
discovery, and searching between end hosts that are addressable on top of IP communication 
networks. An ideal P2P overlay is autonomous, with self-organization and self-management 
against peer churn. An ideal P2P overlay is also resilient, with fault detection and repair 
facilities. However, due to peer autonomy and mutual dependency, peer transiency and its 
implications have a great effect on the efficacy of replication, search, and query mechanisms 
in content distribution [8][9]. 

The problem of free riding in a P2P system negates the reciprocal provision of resources 
among peers. This problem is separate from the concept of traditional distributed applications. 
Free riding is irrelevant to P2P networking, but inherits from P2P participants’ attitudes of 
mind. A large percentage of the peer population consists of free riders - maximizing their own 
utility disproportionate to their contribution to the system [10][11]. Unfortunately, free riders 
take advantage of generous peers by consuming service capacity. If no request admission or 
scheduling policy is enforced to maintain service fairness, generous peers often become 
frustrated and refuse to contribute anymore [12]. Some studies propose incentive approaches 
to encourage peer contribution and guarantee service fairness [13][14]. The growing 
recognition of reputation systems has generated significant research in this area, as Section 2 
shows. Reputation-based schemes determine service priorities based on the histories of peer 
contributions to the system [15]: reputable peers receive high priority and are rewarded more 
resources to compensate for their contribution.  

This study systematically addresses the issues of peer churn, free riding, and workload 
dynamics, and considers the dual factors of server-oriented peer capacity and client-oriented 
peer contribution in a P2P computing context. This study designs a fair peer assignment 
scheme for file sharing in a dynamic P2P network environment. The proposed scheme 

                                                           
1 A peer’s lifespan is transitory because a peer can freely join in the system, be active for some time, and then go 

off-line, unpredictably removing itself from the system. 
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maintains service agility and fairness among peers in response to peer churn and free riding. 
The basic concept here is to gradate client-oriented peer contribution and server-oriented peer 
capacity based on uploading capacity and downloading bandwidth, respectively. The system 
server performs peer management that records peers’ uploading and downloading behavior. 
Based on request workload, the system server applies specific peer assignment strategies to 
control the request admission and scheduling processes to guarantee fair and efficient use of 
resources without decreasing overall system throughput. Therefore, the results of this study 
are summarized as follows. 
 This study formulates the measures of peer contribution and capacity. In light of 

indirect-reciprocity notion [13], a basic peer assignment strategy (PAS) is designed to 
choose server peers to process download requests in descending order of peer 
contribution. 

 The advanced peer assignment strategy (APAS), which extends PAS with a specific 
substitute policy, can modify peer assignment in response to the traffic dynamics created 
by peer churn and varying request workload. 

 The APAS is associated with a specific peer elimination process (APAS-E) to cope with 
possible service starvation and further boost the ability of service differentiation and 
fairness. 

 The extended design of a distributed APAS (D-APAS) is applicable to large-scale 
partially-centralized and structured P2P environments [3]. This design includes two kinds 
of tracker-oriented and peer-oriented D-APAS schemes that maintain the functionalities 
and effects mentioned above. 

 The experimental simulations in this study assess performance sensitivities in terms of 
several measure metrics, average download time, ratio of pending requests, download 
count, and download ratio by contribution range. This study also compares the two kinds 
of D-APAS in terms of communication overhead. 

Consequently, this study presents a systematic methodology that provides a basic peer 
management mechanism and an advanced peer assignment strategy with several auxiliary 
functions. The proposed design protects system throughput, service agility, and fairness 
against service starvation and varying traffic dynamics in P2P networks. The proposed design 
is suitable for both centralized and distributed P2P file sharing systems. 

The rest of this article is organized as follows. Section 2 reviews a number of related studies 
on P2P file sharing applications. Section 3 describes the P2P system model. Section 4 details 
the proposed PAS, APAS, APAS-E, and D-APAS. Section 5 presents the performance results, 
while Section 6 provides the conclusion. 

2. Related Work 

The astounding growth of P2P file sharing applications has accelerated the spread of 
multimedia contents, typically music and video categories, throughout the Internet. The 
success of the P2P paradigm is dependint on its users’ altruistic provision and reciprocal 
cooperation in sharing storage and computation resources. However, peers in a P2P system 
have different resources, capabilities, and user attitudes. The egoistic users, i.e., free riders that 
exist in any P2P system [10], make a utopian P2P society impossible. 

The free riding problem – which is not a networking or system issue, but originates from 
user behavior – is difficult to resolve in P2P systems [16][17]. Rational participants may 
refuse to contribute their fair share of resources, and only seek to maximize their own utility. 
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Thus, individual rationality conflicts with social welfare. As reported in [11], Gnutella and 
Napster systems have many free riders, who represent about 70 % all peers. 

Different incentive approaches encourage peers to contribute to the system [13]. Monetary 
payment schemes dictate that service recipients must pay service providers for the resources 
they consume [18]. Many P2P file-sharing systems use the game theory, e.g., the Nash 
equilibrium [19], to study the potential benefits of micro-payment methods [20]. However, 
this scheme has the critical premise of requiring an accounting and micro-payment 
infrastructure, which is impractical in an open P2P network [21][22]. Reciprocity-based 
schemes use the histories of peers’ contributions to the system as decision making processes 
[15], and map peers’ reputation scores to admission and resource allocation strategies [17][23]. 
Reputable peers enjoy higher priority and are rewarded with more resources to compensate for 
their contributions. Previous research [3][7] shows that the growing recognition of reputation 
systems [15] has created a significant amount of research on this topic. The following 
discussion review some of the incentive mechanisms in BitTorrent and many other P2P 
applications. 

In reciprocity-based schemes, peers maintain the histories of the past behavior of other 
peers and use this information in their decision making processes. These schemes can be based 
on direct reciprocity or indirect reciprocity. Direct-reciprocity schemes are appropriate for 
applications with long session durations, as they provide ample opportunities for exchanging 
information between pairs of peers. Typical examples are BitTorrent-like applications that 
employ the tit-for-tat incentive mechanism [24], in which a peer only reciprocates to peers that 
allow it to download; in this case, uploading is a part of the protocol in the rarest first and 
choke algorithms [25]. Nevertheless, BitTorrent still has inherent choking issues. Though it 
can be moderated by the associated optimistic unchoking method which randomly probes a 
new connection to upload, the increase of free riders strikes a trade-off, as reported in [26]. 
Many studies [20][27][28][29][30] are dedicated to tackle the free-riding problems in 
BitTorrent. 

Indirect-reciprocity schemes, a.k.a. reputation-based schemes [15][23][31][32], differ 
from direct-reciprocity schemes not only in computing reputation score/credit of how much a 
peer has contributed to the system, but also in the mapping of scores to different admission and 
allocation strategies. Reputation scores among peers can be pre-computed based on the history 
of peer behavior, and maintained by any reputation system that performs in an out-of-band 
manner. Reputation-based schemes are relatively robust against misbehaving or malicious 
peers, and sustainable for P2P systems with large peer populations, highly dynamic 
memberships, and infrequent repeat transactions. Through reputation differentiation, 
reputable peers have the right of priority service. Exmples include better quality of service and 
user experience, prioritized download capacity, or fast query/response. A punishment policy 
may be imposed on disreputable peers using different punitive levels based on the free-riding 
severity. For example, this policy may limit the propagation of their messages, ignore their 
queries, or even disconnect malicious or unproductive peers from the network [17]. 

On the other hand, query or search mechanisms are important in a P2P system. In highly 
structured P2P systems, e.g., DHT and Chord [7], seraching for an object is strictly based on 
its logical object identifier, and is usually done in log(n) steps. However, protecting this 
structure from peer churn is costly and incurs a significant overhead, when the system is highly 
dynamic. Moreover, structured P2P systems have difficulty of implementing complex queries, 
such as keywords-based search and regular expression-based search. In contrast, less 
structured or unstructured systems have lower maintenance complexity and can adapt to node 
heterogeneity and network dynamics. These systems locate files independent of the system 
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topology by resorting to “near blind” query strategies such as flooding, random walks, 
k-random-walks, iterative deepening, breadth-first search (BFS), and deepth-first search (DFS) 
techniques [33][34]. However, there are two problems with these search mechanisms. On one 
hand, a peer often receives duplicate query messages. This highlights the need to study 
potential approaches to reducing search overhead and query response time [35][36][37][38]. 
On the other hand, when a high-degree peer maintaining P2P connectivity is overloaded, 
queries should be directed toward other peers by taking server peer capacity into account. 

Peer duality, which means that each peer is both a client peer and a server peer, is a special 
feature that distinguishes the P2P file sharing paradigm from other distributed systems. 
Reciprocal provision among peers effects the spread of file replications, increases the file 
volume, and improves the service capacity of the network. Previous studies address how the 
free riding problem affects service unfairness. Though free riders may not reduce system 
throughput, they may unfairly occupy or utilize system resources [2]. The traced-based 
analysis in [4] shows that service capacity, i.e., average throughput, in a P2P network 
experiences exponential growth until it reachs the steady state. The sensitivity of this growth is 
practically related to file segmentation, peer selection, access admission and scheduling policy, 
and traffic dynamics. 

Previous studies [2][4] serve as the motivation for this study to develop a simple peer 
assignment strategy that considers the dual factors of peer contribution and capacity in 
conventional P2P systems. The basic strategy aims to schedule download requests based on 
peer contributions and assign appropriate server peers in charge based on peer capacity. 
Several auxiliary functions sustain performance against service starvation and traffic 
dynamics [9]. This study further applies the proposed strategy, with uncomplicated 
modifications, in distributed P2P systems, and achieves the same effect. Therefore, this study 
presents an advanced peer assignment strategy capable of guaranteeing service agility and 
fairness in dynamic P2P environments. 

3. System Modeling 

This section describes a conventional P2P system environment, and specifies the bandwidth 
resource utilization and peer state management used for resource allocation and content 
distribution in P2P file sharing applications. 

3.1 System Environment 

Fig. 1 shows a centralized, structured P2P system environment [3] on which this proposal is 
based. Specifically, there is a central server that performs the functions of tracking, peer 
assignment, and service provision to support distributing file segments within a P2P network. 
A tracker server is located in a central server or another dedicated host attached to a central 
server2. This tracker server maintains a segment meta-data repository and performs segment 
management and peer management in the system. Fig. 2 shows that a tracker server provides 
the volumes of segment meta-data records, each of which includes a segment index, available 
location references, and other attributes. For every segment, the tracker records a set of peers 
that own this segment, and manages these peers by referring to their states in service. Thus, 
every peer connects to the central server and inquires about where any indicated segment can 
be downloaded. The server promptly processes data access to the meta-data repository, and 

                                                           
2 Consider that a central server is coupled with a dedicated hosting tracker inside a P2P domain. Without ambiguity, 
the roles of a hosting server and its tracker can be used interchangeably in the rest of this article. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010                                   714 

then selects one out of many server peers according to a specific peer assignment strategy. 
With a request reply, a client peer directly connects to its assigned server peer to access the 
indicated segment. Then, with a pair of client and server peers, the central server can monitor 
the download/upload sessions and adjust bandwidth allocation in a timely manner. In addition, 
the server peer can record the download state of every requested segment, remaining upload 
bandwidth, and uploading contribution into its property profile.  
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Fig. 1. A centralized, structured P2P file sharing context. 
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Fig. 2. A tracker functional reference. 

3.2 Resource Utilization 

The P2P system enforces the premise that the granularity of upload and download bandwidth 
utilization is based on a slotted time model. Each time slot has a minimal transfer rate μ as a 
base unit of bandwidth allocation. Accordingly, each file is divided into a number of 
equally-sized segments; it takes one time slot to deliver each file segment. 

For simplicity, let a peer Pi have uniform upload and download bandwidth capacities with a 
maximal data transfer rate μi. In this case, Pi can at most offer μi / μ  transfer sessions 
simultaneously in either download or upload way. Peers that have a remaining transfer rate of 
less than μ will not be allowed to request or offer any segments until they have sufficient 
bandwidth. This precondition facilitates the analysis of bandwidth granularity. 

Selecting a fit server peer is a decisive step before a client peer starts to download any 
segment. The system performs peer management based on bandwidth availability. 
Specifically, the following definitions provide the update and download states of each peer. 
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Definition 1 (upload state) A server peer falls into one of three states: busy, normal, and 
leisure. A busy peer is unable to supply any more segments because its remaining upload 
bandwidth is less than μ. A normal peer is uploading segments to other peers and has a 
remaining upload bandwidth higher than μ. A leisure peer has an upload bandwidth higher 
than μ, but is not currently uploading any segments. 
 
Definition 2 (download state) A client peer falls into one of three states: active, sleep, and 
idle. A download state is active when a peer requests a segment, successfully finds it, and 
negotiates with a server peer to process the downloading. If a server peer is found, but 
unavailable temporarily, the state is set to sleep. Otherwise, a peer is idle if no requests are 
pending or no server peer is found. 
 

Table 1. Symbols used in the peer assignment strategy. 
Symbol Meaning 

μ the low bound of available data transfer rate for uploading or downloading a segment 
n the amount of peers in the system 
Pi peer identifier, for i=1, 2, 3,…, n 
Sk segment identifier, for i=1, 2, 3,…, m  
ri

k the request for downloading Sk sent by a peer Pi 
Ci the contribution of a peer Pi for file segment distribution 

ULpast(i) the number of segments which a peer Pi had uploaded in the past 
ULnow(i) the number of segments which a peer Pi is uploading now 

R(i) the set of segments which a peer Pi is asking for in response to its pending requests 
H(Sk) the set of peers which have Sk within a specific tracker’s domain 
B(Sk) the set of segments which peers in H(Sk) are delivering 

H*(B(Sk)) the candidate set of substitute server peers which have at least a segment belonging to B(Sk)
Gi the average upload bandwidth which a server peer Pi can now offer 

O(s) the set of segments which a substitute peer Ps owns 
μi the total upload/download bandwidth which Pi owns 

I(Sk) the relative immediacy of segment Sk to be uploaded first in the system 
Di a P2P domain identifier, for i=1, 2, 3,…, t 
Ti a tracker identifier, for i=1, 2, 3,…, t 

TG the group of all trackers in the system as considered 
Ti(Sk) the corresponding/hosting tracker Ti which handles the request ri

k  
H*(TG) the set of potential substitute server peers reported from trackers in TG 

P*s the optimal one out of substitute server peers in the system 

4. Peer Assignment and Management Strategies 

This section consists of two parts. The first part proposes peer assignment strategies in a 
centralized P2P model, and the second adapts these designs to provide distributed versions in a 
large-scale P2P model. Section 4.1 formulates the measures of a client peer’s contribution and 
server peer’s grading of bandwidth capacity, which are both used to differentiate request 
priority and assignment among peers. Section 4.2 designs a basic peer assignment strategy 
(PAS) in a centralized P2P model. Section 4.3 presents an advanced peer assignment strategy 
(APAS) that extends the PAS with a substitute policy for peer assignment. Section 4.4 
integrates APAS with a peer elimination and bandwidth reclamation method (APAS-E) to 
guarantee fair bandwidth allocation. Furthermore, Section 4.5 remodels the APAS and 
APAS-E as D-APAS. Section 4.6 describes a bandwidth adjustment method that can be 
incorporated into APAS or D-APAS to cope with asymmetric bandwidth utilization. Finally, 
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this study presents a joint design of peer assignment and management mechanism to protect a 
P2P system from peer churn and free riding.  

To ease of exposition in this section, Table 1 lists the meanings of symbols used in the 
proposed scheme. These denotations are identical in both centralized and distributed P2P 
systems unless special notes are given to discern the working domain that corresponds to a 
specific hosting server/tracker. 

4.1 Peer Contribution and Grading 

The proposed peer assignment and management strategy adopts an incentive-based approach 
to encourage peers to contribute their own resources to achieve better performance. Notice that 
the direct-reciprocity and tit-for-tat incentive approaches in BitTorrent-like applications have 
inherent choking issues [26]. The proposed scheme adopts an indirect-reciprocity-based 
incentive approach that refers to the historical and accumulated contributions of upload 
bandwidth voluntarily provided by the peer. Without loss of generality, the measure of peer 
contribution is given by a linear formula of a peer’s previous contribution: 

),1()()(   iULiULC nowpasti                                          (1) 

where ULnow is the number of segments which a peer is uploading now, ULpast is the number of 
segments that a peer has uploaded in the past, and 0≤ α ≤1 is a tunable parameter of relative 
weighting between the two terms. The terms ULpast or ULnow can be emphasized as desired. 
Weighting ULpast favors a peer that stays in the system for a long time. Comparatively, 
weighting ULnow favors a peer that has superior upload capacity, popular segments, or contains 
more segments in its local storage. Equation (1) shows that the central server prioritizes 
download requests from client peers. 

On the other hand, in processing upload bandwidth allocation, a central server decides 
which server peer should serve client peer’s requests by considering the grading of upload 
bandwidth capacity that a server peer can provide to its client peers, given by 

.),1)(/(   inowii GandiULG                                           (2) 

4.2 Basic Peer Assignment Strategy (PAS) 

The PAS considers both service fairness and agility during peer selection. Basically, PAS 
appoints server peers to take the request workload in descending order of peer grading, and 
schedules requests in descending order of peer contribution. PAS sets a minimal bound μ of 
available upload and download bandwidth to improve download speed. A request from a client 
peer of the highest Ci is handled first. Then, the server peer with the highest Gi deals with this 
request. Thus, PAS can simply and evenly balance the use of upload bandwidth capacities 
among peers and avoid bandwidth fragmentation throughout the system. 

Fig. 3 illustrates the PAS procedure. Given a peer Pi whose download bandwidth is higher 
than μ, Pi sends the central server a request ri

k to download a segment Sk. With a ri
k, the tracker 

generates a peer set, called H(Sk), that includes all peers having Si
k in their local storages. Then, 

the server selects the server peer Pr with the highest upload rate in H(Sk) using PAS. If Pr’s 
upload bandwidth is not lower than μ, the server notifies Pi of its server peer Pr in charge. Pi 
then negotiates with Pr for downloading Sk. If Pr does not have enough upload bandwidth to 
serve this request at this moment, the server will mark Pi’s download state as sleep and push 
this request back into the request queue. The server later checks if ri

k is valid yet. Algorithm 1 
presents the PAS’s algorithmic form for reference. 
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Fig. 3. A basic peer assignment strategy. 

 
Algorithm 1: Basic Peer Assignment Strategy 

1: Input: R(i) ≠ {}, H*(B(Sk)) ={}, Pr = null 
2: 
3: 

Output: Pr : Pi’s designated server peer 
Begin 

4: R(i) ← getRequestSet( R(i) ); 
5: K ← getNumOfSegments( R(i) ); 
6: for Sk  R(i) and k ← 1, K do 
7:     H(Sk) ← findPeerSet( Sk , AllPeers ); 
8:     H(Sk) ← sortGrade( H(Sk) ,  ); 
9:     Pr ← getFirstPeer( H(Sk) ); 

10:     if Grade(r)  μ  then                                                        Pr’s grading 
11:         startDownload( Pi , Pr , Sk ); 
12:     else                                                        APAS Strategy – Substitute policy 
13:         doAPAS_SubstitutePolicy( Sk , H(Sk) );           Refer to Algorithm 2 
14:     end if 
15: end for 
16: End 

4.3 Advanced Peer Assignment Strategy (APAS) 

The APAS modifies PAS with functional extensions to support “concurrent” and 
“non-blocking” downloading mechanisms. The tie-in “substitute policy” on peer assignment 
not only sustains fairness and throughput, but also alleviates the service starvation problem 
due to dynamic changes of skewed access workload and peer churn in a dynamic P2P context. 

4.3.1 Concurrent Downloading 

Given a number of pending requests from a peer Pi in queue, the central server has a set of all 
segments requested by Pi, denoted as R(i). As in PAS, for each Sk in R(i), the server quickly 
finds a server peer from H(Sk) for uploading Sk. If R(i) contains more segments, this process 
repeats itself until Pi’s remaining download bandwidth is less than μ. The processing sequence 
of requests in R(i) may depend on any specific schedule, such as first-in-first-out (FIFO), 
earlier deadline first (EDF), high download speed first, etc. However, the analysis of request 
scheduling methods is orthogonal to this study. For simplicity, assume that every request is 
subject to the same processing deadline. The proposed scheme adopts the FIFO simply as a 
development baseline. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010                                   718 

4.3.2 Non-blocking Downloading 

In PAS, there is a critical situation of download blocking due to “service starvation.” This 
situation - with no uploading of any segment Sk in R(i) - does not mean that a requested 
segment does not exist in the system. A heavy request workload for scarce segments, peer 
churn, and skewed access patterns can all induce this problem, especially when traffic 
dynamics is considered. When all peers owning a segment Sk in R(i) are in the busy state, they 
have no more bandwidth to upload. All requests for R(i) are then blocked until any Pr in H(Sk) 
reclaims sufficient upload bandwidth to accept a new request. This increases the likelihood of 
PAS failure due to service starvation, resulting in poor performance. The next subsection 
presents a peer substitute technique to cope up with this situation. 

4.3.3 Substitute Policy 

The peer assignment scheme employs a peer substitute policy to address the possibility of 
service starvation. A substitute policy attempts to find a new substitute peer Ps to replace a 
busy peer Pr in H(Sk) and take over its ongoing uploading tasks. The replaced peer Pr can then 
reclaim more upload bandwidth and accept another request for some segment now held by Pr. 
Note that this policy can alleviate the service starvation with respect to many influential 
factors under dynamic traffic.  

The following steps specify this substitute policy and its procedure (Steps 1-5) in reference 
to Fig. 4. To ease exposition, Algorithm 2 shows the algorithmic form of the APAS with a 
substitute policy. 
Step 1: Let a request ri

k run into a download blocking case. The central server firstly assembles 
a super set of segments, denoted as B(Sk), which all peers in H(Sk) are currently 
delivering.  

Step 2: For every segment Sl in B(Sk), the central server tries to find a candidate server peer Pl. 
A peer qualifies as a candidate server peer if it is the one with the highest grade Gi out 
of all peers that have Sl, and its grade is no less than μ. Therefore, the server has a set of 
candidate server peers, denoted as H*(B(Sk)). The peer with the highest grade in 
H*(B(Sk)) is then chosen as a substitute server peer Ps.  

Step 3: When a Ps is determined, the central server tries to reclaim some upload bandwidth to 
resolve the download blocking problem by using Ps to replace some peer in H(Sk). 
Specifically, the server knows all segments owned by Ps, denoted as O(s). The server 
checks every segment Ss in O(s): if Ss is included in B(Sk), at least one peer in H(Sk) is 
currently uploading Ss to another peer in the system. In this case, the server collects a 
set of client peers that are downloading the particular Ss, which simultaneously belongs 
to both O(s) and B(Sk), from those peers in H(Sk).  

Step 4: Among these client peers, the central server chooses the one with the highest peer 
contribution as a “passed” client peer. Peer contribution is considered first because a 
passed client peer may obtain better service after changing its server peer to the 
substitute Ps. In case a Ps’s grade is less than its original server peer, the server may 
alternatively check another Ps with lower Cs, but higher Gs. 

Step 5: The server instructs a passed client peer to download Ss from Ps instead of its original 
server peer in H(Sk). Then, the original peer regains some uploading bandwidth and 
eventually commences uploading Sk to Pi. 

Fig. 4 illustrates the usage of the substitute policy. Let H(Sk) include two peers, P1 and P2. 
Initially, both P1 and P2 are in the busy state. P1 is delivering S1 to Px and S2 to another peer, 
and P2 is delivering S3 to Py and S4 to another peer. B(Sk) now includes S1, S2, S3, and S4. The 
server accordingly determines H*(B(Sk)), which includes all peers sending any segments in 
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B(Sk). Let the server select Ps as a candidate server peer from H*(B(Sk)). Since Ps has S1 and S3, 
the server checks H(Sk) and finds that two client peers Px and Py are downloading S1 and S3 
from P1 and P2, respectively. The server selects Px or Py depending on who has the highest 
contribution as the passed client peer. This passed client peer redirects its download from Ps 
instead of its previous server peer. Eventually, either P1 or P2 in H(Sk) now has enough upload 
bandwidth to accept another pending request in the queue. 
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Fig. 4. The APAS with substitute policy. 
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Fig. 5. The APAS with peer elimination. 

4.4 APAS with Peer Elimination (APAS-E) 

In APAS, there is a subtle situation in which a central server cannot find any suitable substitute 
server peers, since none of peers in H*(B(Sk)) have enough remaining upload bandwidth. This 
study devises a peer elimination method to address this problem. The proposed method 
attempts to reduce or cancel a peer’s ongoing downloading if this peer has low contribution, 
such as a free rider. That is, a peer with a higher contribution can preempt a downloading 
session for the sake of fair resource allocation.  

Fig. 5 shows the procedure of APAS with peer elimination in reference to Algorithm 3. 
Based on the previous example in Fig. 4, suppose that the central server cannot find a 
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substitute server peer Ps to upload a particular Sk in R(i). The server further checks all potential 
server peers in H(Sk) and their client peers. Among these client peers, the Plow with the lowest 
contribution is selected to compare with Pi. If Pi’s contribution is higher than Plow’s, Pi will 
replace Plow to use upload bandwidth from P1, given that Plow downloads Sk from P1. The server 
cancels Plow’s ongoing download, and instructs Plow to resend a request for Sk, or alternatively 
defers its download until another server peer becomes available. 

 
Algorithm 2: Advanced Peer Assignment Strategy with Substitute Policy 

1: Procedure DoAPAS_SubstitutePolicy( Sk, H(Sk) ) 
2: 
3: 

    B(Sk) ← findSegmentSet( H(Sk) ); 
    l ← getNumOfSegments( B(Sk) ); 

4:     for Sl  B(Sk) and l ← 1, L do 
5:         H(Sl) ← findPeerSet( Sl , AllPeers ); 
6:         H(Sl) ← sortGrade( H(Sl) ,  ); 
7:         Pl ← getFirstPeer( H(Sl) ); 
8:         if Grade( l )  μ  then  
9:             H*( B(Sk) ) ←H*( B(Sk) )  Pl ; 

10:         end if  
11:     end for                                           A candidate set of substitute peers 
12:     if H*( B(Sk) ) ≠ {} then  
13:         H*( B(Sk) ) ← sortGrade( H*( B(Sk) ) ,  ); 
14:         Ps ← getFristPeer( H*( B(Sk) ) );                     Ps: a substitute peer 
15:         O(s) ← findSegmentSet( Ps ); 
16:         M ← getNumOfSegments(O(s) ); 
17:         for Ss  O(s) and s ← 1, M  do 
18:             if Ss B(Sk) then 
19:                 H(Ss) ← findPeerSet( Ss , H(Sk) ); 
20:                 H(Ss) ← sortContribution( H(Ss) ,  ); 
21:                 Pt ← getFirstPeer( H(Ss) );                  Pt: a passed client peer 
22:                 Pr ← findServerPeer( Pt , Ss ); 
23:                 setServerPeer( Pt , Ps , Ss );        Set Ps as Pt’s new server peer 
24:                 startDownload( Pt , Ss ); 
25:                 startDownload( Pi , Pr , Sk ); 
26:                 break; 
27:             end if 
28:         end for 
29:     else                                                        APAS Strategy – Elimination 
30:         doAPAS_Elimination( Sk , H(Sk) ); 
31:                                                                                 Refer to Algorithm 3 
32:     end if  
33: end procedure 

 
Algorithm 3: Advanced Peer Assignment Strategy with Peer Elimination 

1: Procedure DoAPAS_Elimination( Sk , H(Sk) ) 
2: 
3: 

    H(Sk) ← sortContribution( H(Sk) ,  ); 
    Plow ← getLastPeer( H(Sk) ); 

4:     if Pi’s Ci > Plow’s C(low) then 
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5:         Pr ← findServerPeer( Plow , Sk ); 
6:         stopDownload( Plow , Sk ); 
7:         startDownload( Pi , Pr , Sk ); 
8:         else                                                                                      Pr= null 
9:             Unsuccessfully! Pi’s request for Sk; 

10:         end if  
11: end procedure 

 

4.5 Distributed Peer Assignment  

Further modification allows distributed peer assignment strategies to be used in large-scale 
distributed P2P networks. The APAS and APAS-E with uncomplicated modifications are still 
compatible with distributed P2P systems. This subsection describes large-scale distributed 
P2P network environments and designs two tracker-oriented and peer-oriented approaches for 
distributed APAS, called D-APAS for brevity.  

4.5.1 Partially-Centralized and Structured P2P Environment 

The practical deployment of a large-scale P2P system is usually based on the 
partially-centralized and structured P2P model, such as the P2P overlay categories in [3]. 
Such a P2P system consists of a number of smal-scale centralized and structured P2P systems, 
which accord with the conventional system described in Section 3.1. Every small P2P system 
is referred as a domain Di, and contains a hosting tracker Ti in charge of peers that exist in this 
domain. Trackers from external P2P domains form and communicate in a tracker group TG, 
called a “closed tracker network.” In this network each tracker acts as a local cental directory 
for peers in its local domain. When a peer Pi in Di requests a segment Sk, Ti(Sk) represents the 
hosting tracker that handles this request. Each tracker can forward queries and downloading 
requests to other trackers over the tracker network. Although an unstructured P2P system is 
somewhat workable in a small-scale network, combining many unstructured P2P systems into 
a large one is inpracticable due the drastic increase of message workload and tremendous 
search requests flooding the system. Instead, the proposed D-APAS is based on a 
partially-centralized and structured network architecture. 
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Fig. 6. Distributed peer assignment strategies in a large-scale P2P network. 
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Fig. 6 illustrates this reference architecture, which introduces a new tracker network. A 
tracker group consists of many trackers that enforce PAS, APAS, and APAS-E in their P2P 
domains. Trackers communicate with other trackers to collabrate on D-APAS over the tracker 
network. Due to a varity of architectural and protocol dependencies, the design of a tracker 
network overlay is beyond the scope of this study. Since a tracker network is relatively small, 
without complication, this design plainly refers to a simple request/response messaging 
protocol by unicasting and broadcasting. This type of network commonly appears in many 
BitTorrent-like P2P applications. Consequently, the P2P netwok archiecture can be regarded 
as an instance of a two-tier system archtecture.  

4.5.2 Distributed APAS (D-APAS) 

The D-APAS attempts to augment the effects of APAS and APAS-E, as described in Sections 
4.3 and 4.4, in a large-scale P2P network environment. D-APAS is applied into local and 
external P2P domains, simultaneously and collectively, to deal with service fairness, 
throughput, and starvation in a distributed manner. Note that the basic PAS procedure within a 
local domain remains unchanged. What is mainly modified in D-APAS is the procedure of 
generating a set of candidate server peers, i.e., H*(B(Sk)), from a tracker group instead of a 
singular tracker, as compared in Step 2 in Section 4.3.3. In addition, D-APAS is based on 
several assumptions.  
 A peer is able to communicate with more than one tracker to operate different queries 

and downloading requests.  
 When a peer has completely downloaded any requested segment through some 

tracker’s coordination, this peer becomes linked to the domain of that tracker. In other 
words, a peer can concurrently belong to multiple domains, hosted by different 
trackers, from which this peer has downloaded different segments. 

 Every tracker is not only responsible for offering the segments kept its local domain, 
but can also deliver to and receive from other trackers specific request/response 
messages to perform distributed tasks.  

In reference to Fig. 6, the following steps describe the designs of D-APAS and its procedure 
(Steps 1-5). To ease presentation, Algorithm 4 shows the algorithmic form of the D-APAS. 
Initially, D-APAS will start in case that a peer Pi with request ri

k runs into a downloading 
blocking situation.  
Step 1: The hosting tracker Ti(Sk) first determines H(Sk), including peers in Di that own Sk, and 

then generates B(Sk), i.e., a super set of segments which all peers in H(Sk) are currently 
delivering. (This step is similar to Step 1 in Section 4.3.3) 

Step 2: With B(Sk), Ti(Sk) attempts to determine an optimal substitute server peer P*s in the 
distributed P2P system. In doing so, Ti(Sk) not only finds a local substitute server peer 
in Di, but also asks other trackers to find and report external substitute server peers, 
respectively. Thus, Ti(Sk) gathers a set of all potential substitutes H*(TG) from all 
trackers in TG. The peer with the highest grade in H*(TG) is chosen as P*s. Remember 
that every tracker follows the same process in Step 2 in Section 4.3.3 to find a potential 
substitute within its domain. 

To produce P*s, the development of D-APAS presents the tracker-oriented and the 
peer-oriented methods, respectively described as follows.  
 Tracker-oriented method: The hosting tracker Ti(Sk) appeals to all external 

trackers in the tracker network to collaboratively find P*s. The procedure of this 
method is specified below. 

Firstly, Ti(Sk) broadcasts H(Sk) to other trackers in the tracker network. Every 
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external tracker Tx checks if there are any peers in H(Sk) which also exist in its 
domain Dx. If no peer is found, Tx sends a negative report to Ti(Sk). If some peers 
in H(Sk), denoted as Hsub(Sk), are found in Dx, Tx assembles a subset of B(Sk), 
denoted as Bsub(Sk), which peers in Hsub(Sk) are concurrently delivering.  

Next, Tx tries to find a candidate server peer for every segment in Bsub(Sk). Tx 
then has a set of candidate server peers, H*(Bsub(Sk)). The peer with the highest 
grade is regarded as the potential substitute Ps in Dx. Thus, Tx reports Ps to 
Ti(Sk).  

Finally, since all external trackers perform the above process simultaneously, 
Ti(Sk) can receive a numer of reports from external trackers. Accordingly, Ti(Sk) 
figures out the optimal substitute P*s. 

 Peer-oriented method: The hosting tracker Ti(Sk) requests local peers in H(Sk) to 
report a list of potential trackers which Ti(Sk) will later ask to collaboratively 
find P*s. The procedure of this method is given below. 

Firstly, in light of H(Sk) and B(Sk), Ti(Sk) asks each peer in H(Sk) to report a 
list of pairing records <segment, tracker> = <Sx, Tx>. A pairing record means 
that a peer in H(Sk) is delivering a segment Sx in B(Sk) under a tracker Tx’s 
coordination. Thus, Ti(Sk) learns a subset of potential trackers TGsub that are 
responsible for delivering B(Sk).  

Next, Ti(Sk) informs each potential tracker Tx in TGsub of its corresponding 
segments Bsub(Sk). While receiving Bsub(Sk), Tx reflectively knows Hsub(Sk) in Dx.  

Subsequently, Tx performs the same procedure as mentioned above to 
determine H*(Bsub(Sk)) and a potential substitute Ps in Dx. Ti(Sk) picks out P*s 
from all potential trackers’ reports of their potential substitutes.  

Note that the tracker-oriented and the peer-oriented method have the same effect of 
finding P*s although they have different messaging and computation overheads. The 
following section examines their relative performance. 

Step 3: When a P*s is determined, Ti(Sk) tries to reclaim some upload bandwidth to resolve the 
downloading blocking by using P*s to replace some peer Pr in H(Sk). Since this step is 
similar to the procedure of Step 3 and Step 4 in Section 4.3.3, the details of this step are 
omitted here.  

Step 4: Ti(Sk) determines a passed client peer Px and redirects it to download an indicated 
segment from P*s instead of the original server peer Pr.  

Step 5: Pr thus regains some uploading bandwidth, and eventually begins uploading Sk to Pi. 
   

Algorithm 4: Distributed Advanced Peer Assignment Strategy  
1: Procedure Do_D-APAS_OptimalSubstitute ( Sk, H(Sk), Ti(Sk,) ) 
2:     B(Sk) ← findSegmentSet( H(Sk) ); 
3:     if TrackerOrientedMethod is True then   
4:         t ← getNumOfTrackers( TG ); 
5:         for Tt  TG and t ← 1, T do 
6:             Ps ← findPotentialSubstitute_CBF( H(Sk), B(Sk), Tt , Dt ); 
7:                                                                      CBF(): a call-back-function 
8:                                This function is similar to Lines 1-14 in Algorithm 2 
9:                                

10:             H*( TG ) ← H*( TG )  Ps ; 
11:         end for 
12:     else                                                                     PeerOrientedMethod 
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13:         n ← getNumOfPeers( H(Sk) ); 
14:         for Pn  H(Sk) and n ← 1, N do 
15:             L<S,T> ← getListOfPotentialTracker( Pn );   
16:             TGsub ← TGsub  L<S,T>;  
17:         end for 
18:         t ← getNumOfTrackers( TGsub ); 
19:         for Tt  TGsub and t ← 1, T do 
20:             Ps ← findPotentialSubstitute_CBF( Hsub(Sk), Bsub(Sk), Tt , Dt ); 
21:             H*( TG ) ← H*( TG )  Ps ; 
22:         end for 
23:     end if 
24:     if H*( TG ) ≠ {} then  
25:             H*( TG ) ← sortGrade( H*( TG ) ,  ); 
26:             P*s ← getFristPeer( H*( TG ) );        P*s: an optimal substitute 
27:             …… 
28:             /* The omitted code is the same as Lines 15-28 in Algorithm 2 */ 
29:             …… 
30:     Else 
31:         doASAP_Elimination( Sk, H(Sk) ); 
32:                                                                                 Refer to Algorithm 3 
33:     end if 
34: end procedure 

4.6 Bandwidth Adjustment and Feedback 

Peer assignment inevitably addresses the potential issue of asymmetric bandwidth allocation 
in a dynamic P2P context. According to the flat bandwidth allocation above, the hosting 
server/tracker can estimate the upload bandwidth that a server peer assigns to a client peer 
based on the server peer’s grade. In practice, a client peer can have more, equal, or lower 
unoccupied download bandwidth than its server peer’s upload bandwidth. Thus, asymmetric 
bandwidth allocation can cause lower resource utilization and longer transfer time. This 
problem calls for a dynamic bandwidth adjustment method capable of tackling the different 
asymmetric scenarios caused by variances in request workload, access pattern, peer churn, etc. 
Ideally, the server should be able to reclaim unused and surplus bandwidth resources, and 
reallocate them based on the relative contributions of client peers. Client peers with higher 
contributions can obtain more bandwidth resources, achieving efficiency and fairness in 
bandwidth utilization. 

The following discussion explains the dynamic bandwidth adjustment method. This design 
controls several factors, including segment access popularity, segment replication and scarcity, 
request workload, and service utilization based on the amount of pending requests, in a 
dynamic P2P context. In the spirit of the P2P paradigm and from a causality standpoint, 
distributing the rare/scarce segments requested by many pending requests should be 
considered first to avoid dropping requests. Client peers can commonly request a particular 
segment, but often get stuck in sleep and idle states, even though the aforementioned substitute 
policy is used. This phenomenon indicates that the overall supply of upload bandwidth for this 
segment falls short of demand, and implies an insufficient amount of server peers. In this case, 
the server should find new or more peers to contribute to this segment. Accordingly, the 
following measure calculates the relative “immediacy” of any segment Sk in the system. The 
segment of the largest value of I(Sk) should be uploaded first. 
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where the term |H(Sk)| indicates the cardinality of H(Sk), i.e., the number of peers having Sk in 
the system, and |sleep(Sk)| and |idle(Sk)| represent the number of peers asking for Sk in the sleep 
and idle states, respectively. 

This study learns that the most cost-effective course of action is to apply bandwidth 
adjustment to peer’s joining and leaving processes, resulting in a low-complexity system 
design. Assume that a peer is free to join and leave a P2P system anytime. Initially, a new peer 
without contribution is not comparable to other peers in the system. With service provision, 
the server must help new peers offer their upload capacities as soon as possible to accumulate 
contributions. Given a set of segments that a new peer owns, the server checks with its tracker 
to match and direct some client peers’ downloadings to this new peer. The tracker then 
arranges a group of target client peers for a new peer. Peers in the idle state are checked before 
peers in the sleep state. Other peers in the active state will be skipped, while they are presently 
satisfied by other server peers. Hence, this checking order reduces the query drop rate caused 
by idle peers. 

Finally, consider the case of a server peer or a client peer leaving the network. In the former, 
all client peers downloading segments from a leaving server peer will be asked to re-send their 
requests. The hosting server then performs the necessary specific peer assignment and 
bandwidth adjustment to re-arrange download requests. In the latter case, the hosting server 
releases all upload bandwidth occupied by this client peer immediately upon detecting its 
departure. The returned upload bandwidth can be used to upload more new segments, or 
distributed to other ongoing uploading sessions.  

5. Performance Evaluation 

This section describes the simulation and evaluation of PAS, APAS, and APAS-E in terms of 
average download time, ratio of pending requests, and amount of download segments under 
different bandwidth capacity and peer contribution thresholds. This section also examines the 
relative performance of the tracker-oriented D-APAS and the peer-oriented D-APAS in terms 
of messaging overhead created by every request across the network group in the distributed 
network environment. 

5.1 Simulation Environment 

The experiments in this study involve a simple simulator based on a discrete and slotted 
time-based model. Table 2 lists the parameters and parameter values used in the simulations. 
The simulator runs two different system models: 1) a centralized P2P model with a small-scale 
peer population of n=2048, 4096, or 8192 peers, and 2) a distributed model containing 
n=100000 peers evenly scattered in TG=1, 2, …, 128 network domains. Every peer arbitrarily 
contains one of d=820 files as its file sharing base. Every file has the same size f=30,000 KB, 
and consists of 10 file segments of equal size m=3000 KB. Every peer has uniform upload and 
download capacities μi assigned by a normal distribution with μi=100 and σ=1 or a random 
distribution with μi=[50, 150]. The minimal threshold of remaining upload/download 
bandwidth is set as μ, that is a percent of μi. 
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Table 2. Description of simulation parameters. 
Symbol Meaning Value range 

t time duration in the simulation 1000 ~ 8000 
n amount of peer population in a centralized model 

amount of peer population in a distributed model 
2048, 4096, 8192 
100000 

TG amount of trackers in the tracker network 2, …128 
μi a peer Pi’s upload / download bandwidth capacity Normal(100, 1) or

Random(50, 150)
μ minimal / base unit of data transfer rate (percent of μi) 10, 20,…, 100%
d amount of files in the system 820 
f file size 30,000 KB 
m uniform segment size 3,000 KB 
α tunable parameter to adjust relative weighting between ULpast and ULnow [0, 1] 
pin random prabability that a new peer joins in the system 0.002 
pout random probability that a peer leaves as it has any pending request (or not) 0.002 (or 0.003)
pr random probability that a peer sends a new request 0.005 ~ 0.1 
Q range of mean relative duration 30 

 
The simulation runs in 1000, 2000, 4000, or 8000 time units, and peers are free to join and 

leave the system. Particularly, new peers join at a random probability pin=0.005. A peer can 
leave the system at two different probabilities: pout=0.002 when it is in 
active/sleep/busy/normal state, or pout=0.003 in the leisure/idle states. For traffic generation, 
this simulation considers a heavy request workload. Every peer issues a new request to access 
a file at a random probability pr=0.005, 0.01, 0.05, or 0.1. Depending on file segmentation, 
every peer generates 10 segment requests to perform concurrent uploadings/downloadings in a 
batch. Each peer is assigned a request queue of length Q=30 to keep its pending requests. In 
addition, a peer’s contribution is increased by Eq. (1), in response to its segment uploading, as 
α is set in the range of 0.5±0.15.  

Accordingly, this study examines the proposed PAS, APAS, APAS-E, and D-APAS in 
terms of the four performance metrics below. The first two measures examine service agility 
and throughput in PAS, APAS, and APAS-E under variance of μ threshold. The third measure 
examines the effect of APAS on service fairness against free-riding issues. The last measure 
reflects the efficiency of D-APAS by considering messaging overhead in a large-scale 
distributed P2P network. 
 Average download time means the average duration from the moment at which a client 

peer sends a segment request until the segment is uploaded by a server peer. 
 Average ratio of pending requests is the total number of pending requests in queue to the 

total of segment requests that all peers have sent to the system. 
 Average number of download segments by contribution range is the amount of segments 

that all peers in a specific contribution range have downloaded to the total of peers in this 
contribution range. 

 Average number of outward messages per request indicates the average of outward 
messages among trackers, caused by any request in a distributed P2P model.  

5.2 Sensitivity to Average Download Time  

This subsection inspects the radical intention of improving service agility and fairness. Fig. 6 
and 7 illustrate the experimental results of average download time attained by PAS, APAS, 
and APAS-E. Fig. 8 compares the performance of PAS and APAS when the simulation runs 
over different time periods. Fig. 9-(a) presents similar results under both normal and random 
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distributions of peer capacity μi. These figures indicate that bandwidth granularity directly 
influences average download time. A larger value of μ decreases the download time; in 
contrast, a smaller value of μ improves download concurrency and service agility. APAS 
achieves better performance than PAS, and APAS-E achieves performance similar to that of 
APAS.  

An analysis of the performance results above shows that the granularity of upload/download 
bandwidth allocation significantly influences system performance. The time difference 
between PAS and the other two methods increases as μ decreases. Because a smaller μ means 
a higher bandwidth granularity, the number of segments which a peer can upload and 
download increases. In APAS with the substitute policy, the number of candidate server peers 
for each segment request increases implicitly. Thus, a client peer has more chances to get an 
appropriate server peer and quickly begin downloading. When μ>50%, APAS and PAS have 
similar performance. In this case, the substitute policy can run in vain because it is not easy to 
find a server peer with enough remaining bandwidth to serve a passed client peer.  

The efforts of APAS and APAS-E are prominent in reducing download time, especially 
under a heavy request workload as the factor of pr is considered. Fig. 6 shows that with μ≤
50%, n=4096 or 8192, and pr=0.1, APAS and APAS-E reduce download time by about 
15~30% compared with PAS. In contrast, under a light request workload as shown in Fig. 7-(a) 
with n=4096 and pr=0.005, APAS and APAS-E reduce download time by about 10~15% 
compared with the control result of about 12~30% in Fig. 7-(b) with pr=0.05. This 
phenomenon also appears in Fig. 8 with n=8192 and pr=0.005, where all APAS’s cases have 
less than 12 % of download time by comparing Fig. 8-(b) with Fig. 8-(a). 

APAS and APAS-E achieve similar performance regardless of μ since peer elimination is 
not meant to reduce the average download time. High bandwidth granularity can augment the 
effect of substitute policy in APAS and speed up request downloading with low blocking 
probability. In other words, when every peer can process more concurrent requests, the effect 
of elimination in APAS is minor relatively. On the other hand, the results above provide 
information about potential variations in block granularity of file segmentation subject to 
bandwidth granularity of data transfer capability, and vice versa, in a P2P file system. 

 

 
Fig. 6. Sensitivity to average download time under variance of μ (as pr=0.1, t=1000 and α=0.5). 
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Fig. 7. Sensitivity to average download time under variance of μ (as n=4096, t=1000 and α=0.5). 
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Fig. 8. Sensitivity to average download time under various durations (as n=8192, pr=0.005 and α=0.5). 
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Fig. 9. Performance sensitivities under variance of μ assigned by normal and random distributions (as 

n=8192, pr=0.005, α=0.5, t=1000, and μ=Normal(100, 1) or Random(50, 150)). 
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5.3 Sensitivity to Average Ratio of Pending Requests 

This subsection examines the influence of bandwidth granularity on the system throughput in 
terms of average ratio of pending requests. Fig. 9 shows that all PAS and APAS curves under 
normal and random distributions of peer bandwidth capacity are very close. To avoid 
redudancy, Fig. 10 only depicts the results of normal distribution.  

Note that all the results of PAS, APAS and APAS-E fluctuate only slightly, and are very 
similar. This is because system throughput, i.e., service capacity in a P2P system, is less 
sensitive to bandwidth granularity under stable request workload. As shown in Fig. 9-(b) and 
Fig. 10, although the average ratios obtained by PAS and APAS somewhat ascend as μ 
increases, its ascending degree is small yet. This is because a larger μ decreases the total 
number of available server peers for any segment request, but reduces the download time. 
However, a smaller μ enables a peer to have more concurrent segment requests, but it takes a 
longer time to transfer every segment. In addition, the increase of request workload evenly 
boosts the ratios of pending requests, for example, roughly from 40→50 as pr=0.005→0.05 in 
Fig. 10-(b). Hence, the system throughput exhibits no drastic variations. Compared with PAS, 
applying the substitute policy and peer elimination does not affect system throughput, thereby 
supporting the reliability of APAS and APAS-E. 

 

 
Fig. 10. Sensitivity to average ratio of pending requests (i.e, intensity of dropping requests) under 

variance of μ (as n=4096, t=1000 and α=0.5). 

5.4 Sensitivity to Average Number of Download Segments 

This subsection reviews various attempts to limit the free riding problem and maintain service 
fairness among peers with different levels of contribution. Specifically, Eq. (1) classifies peers 
into clusters based on their peer contributions. The performance results corresponding to each 
cluster are determined by different measures of average download segments, number of times 
by APAS-E, and request blocking ratio of APAS-E to PAS, as Fig. 11-(b), 12-(a), and 12-(b) 
respectively illustrate.  

Fig. 11-(a) examines the sensitivity to relative weighting between a peer’s past and current 
contributions in different peer contribution ranges. Based on the foregoing investigation, in 
which APAS-E attains the best service agility and throughput, Fig. 11-(a) only presents the 
results of APAS-E to simplify the presentation. All the curves in this figure go up almost 
linearly corresponding to incremental increases in the x-axis. Hence, simply applying Eqs. (1) 
and (2) to the peer assignment process helps penalize free riders. In addition, the variety of 
relative weightiness achieved by tuning α in Eq. (1) yields similar performance. Without loss 
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of generality, this study derives the experiment results of case α = 0.5 to examine the relative 
performance of PAS, APAS, and APAS-E, as Fig. 11-(b) depicts.  

 

(a) APAS-E: relative weighting by α (b) relative performance
 

Fig. 11. Sensitivity to the average number of download segments with respect to different peer 
contribution ranges: (a) APAS-E to relative weighting between ULpast and ULnow (as n=8192, μ=50%, 

pr=0.1, t=1000 and α=[0.35, 0.65]), and (b) relative performance among PAS, APAS, and APAS-E (as 
n=8192, μ=50%, pr=0.1, t=1000 and α=0.5). 
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Fig. 12. Relative performance between APAS-E and PAS with respect to different peer contribution 

ranges: (a) number of times - the occurrences of peer elimination made by APAS-E (as n=8192, 
pr=0.005, α=0.5, t=1000 and μ=10, …, 60%), and (b) block ratio of APAS-E to PAS (as n=8192, 

pr=0.005, α=0.5, t=1000 and μ=10, …, 50%). 
 

APAS-E outperforms the other methods in service fairness and utilization. A comparative 
baseline consisting of PAS with FIFO leads to a flat outcome when the difference between two 
peers in respective clusters is small, or less than 10% of the total number of download 
segments. Based on its tie-in substitute policy, APAS rewards frequently-contributing peers 
with more download resources. For instance, the number in cluster of [35, 39] is 1.5 times that 
in cluster [0, 4]. In addition to the substitute policy, the elimination method can significantly 
boost the performance, increasing the difference between these two clusters about 2.4 times. 
The results in Fig. 12-(a) suggest that APAS-E enforces fair peer elimination. In all cases, the 
number of peers eliminated from a cluster of lower contribution is larger under different 
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bandwidth granularities. Furthermore, Fig. 12-(b) shows the ratio of respective numbers of 
blocked requests in PAS and APAS-E caused by temporary service unavailability, during 
which no server peer or substitute server peer is available. APAS-E enables peers with high 
contributions to experinece the reward of high service utiliztion. This effort is quite 
conspicuous in the cases of high bandwidth granularity.  

In summary, the previous investigations of a centralized P2P context indicate that APAS 
with the substitute and elimination policies is amenable and efficientdue to its beneficial 
effects on system throughput and service fairness. The remainder of this section examines its 
distributed version, i.e., D-APAS, in a large-scale distributed P2P environment.  

5.5 Performance Results of D-APAS 

This subsection shows that D-APAS is able to maintain service utilization and fairness in a 
distributed P2P environment. As Section 4.5 shows, this study simulates and compares 
tracker-oriented and peer-oriented D-APASs in terms of messaging overhead across the 
tracker group into the distributed network, where every tracker still performs APAS-E as usual 
inside its network domain. Fig. 13 compares the performance of tracker-oriented and 
peer-oriented D-APASs in a large-scale context with n=100000. Experiments were conducted 
to examine the influences of different factors, including tracker group size, initial number of 
segments owned by each peer, bandwidth granularity, and peer contribution. 

The peer-oriented method outperforms the tracker-oriented method in terms of outward 
message overhead. The experimental results in Fig. 13(a)-(c) show some observations below.  

First, the tracker-oriented method induces a linear growth in message overhead as the 
tracker group size increases, as Fig. 13-(a) shows. In contrast, the message overhead generated 
by the peer-oriented method remains nearly constant regardless of the tracker group size. This 
is because the hosting tracker in the tracker-oriented method forwards H(Sk) to all external 
trackers and asks them to find an optimal substitute server peer. This process propagates a 
considerable amount of messages across the tracker network. In the peer-oriented method, 
however, the hosting tracker first determines a subset of potential trackers. This process avoids 
a “blanket” search in the tracker network.  

Second, computing a pre-determined subset of potential trackers using the peer-oriented 
method is cost-effective because it efficiently reduces the overall message overhead. Although 
this pre-determining process generates some computation and communication overheads, 
these costs are limited within the hosting tracker’s domain. Hence, this process is superior to 
the high expense of the tracker-oriented method. The additional experimental results depicted 
in Fig. 13-(c) support this observation, in that the tracker-oriented method sends more outward 
messages to external trackers than the peer-oriented method. 

Third, bandwidth granularity directly influences the measure of message overhead. Both 
peer-oriented and tracker-oriented methods produce lower message overheads under higher 
granularity. For instance, the obvious differentiation between the cases of μ=10% and μ=50% 
depicted in Fig. 13-(a) confirms this observation. 

Fourth, the tracker-oriented method is sensitive to the variance of number of segments that 
every peer begins with. The greater the initial number is, the smaller the number of messages a 
request may incur. When the initial number is larger enough, the average number of outward 
messages caused by every request approaches zero. In other words, the hosting tracker handles 
almost every request in its local domain. Adding more initialized segments effectively 
increases the probability of finding a server peer using either PAS or APAS within the domain. 
On the other hand, the message overhead of the peer-oriented method remains low for the 
same reason as mentioned above.  
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Fig. 13. Performance results by D-APAS (as n=100000, TG=[2, 4, …, 128], pr=0.005, α=0.5, t=1000, 
and μ=[10, 30, 50%]): (a) average number of outward messages per request against tracker group size 
(as only one initial segment is set), (b) average number of outward messages per request against the 
initial number of segments in each peer (as μ=30%), (c) total of outward messages across the tracker 
network against the number of initial segments in each peer (as μ=30% and TG=128), and (d) block 

ratio in a peer cluster against the number of initial segments in a peer (as μ=30% and TG=128). 
 
Finally, using the tracker-oriented or the peer-oriented method achieves the same result of 

finding an optimal substitute server peer P*s in a large-scale distributed P2P network, though 
they generate different message overheads. Both the peer-oriented and tracker-oriented 
methods can augment service fairness by peer substitute and elimination. Fig. 13-(d) depicts 
the measures of blocking rates among peer clusters. The blocking rate is very low when no 
server peers are available (as a result of temporary unavailability due to unsuccessful peer 
elimination). Again, the blocking rate can be seriously reduced when the system has segments 
scattered over the distributed network.  

The discussion above reviews the peer-oriented and tracker-oriented methods of performing 
APAS and APAS-E in a distributed P2P network environment. Based on the relative 
performance indicated in Fig. 13, the peer-oriented method is superior to the tracker-oriented 
method in terms of efficiency and cost-effectiveness. Nevertheless, whereas the peer-oriented 
method induces a higher computation overhead, the tracker-oriented method is preferable 



733                                                                Hu et al.: Fair Peer Assignment Scheme for Peer-to-Peer File Sharing 

under some critical situations. For example, peers may be resource-constrained to reduce 
computation cost, or when transmission between the tracker and its mobile or thin peers is 
limited or unreliable. Therefore, though the tracker-oriented method is not economical, it is a 
viable alternative under certain conditions. 

6. Conclusions 

This study addresses the peer churn and free riding problems appearing in P2P networks. To 
mitigate these problems, this study proposes a simple and efficient peer assignment scheme to 
protect against performance degradation in terms of service capacity and fairness. The 
proposed design enforces prioritized admission and scheduling policy and deals with request 
workload and upload/download resource allocation in a fair and efficient manner. This study 
also examines several implicit issues, including download concurrency; download blocking, 
and service starvation. This study designs supplementary methods, including peer substitute, 
peer elimination, and bandwidth adjustment, to resolve these issues and prevent APAS 
performance degradation. Experimental results confirm that APAS enhances bandwidth 
utilization and achieves fair resource allocation for P2P file sharing applications. 

This study extends the design of APAS to create the D-APAS, which performs well in 
large-scale distributed P2P networks. This study presents and compares two variants of 
peer-oriented and tracker-oriented D-APASs. Performance results show that both methods 
maintain the functionalities of APAS and augment the effects of peer substitute and 
elimination in distributed P2P networks. However, the peer-oriented method outperforms the 
tracker-oriented method in terms of message overhead, but may induce higher computation 
costs. Hence, these two methods are alternatives with different communication and 
computation concerns.  

Consequently, the contributions of this study are two-fold: the proposed APAS and 
D-APAS can be used in centralized and distributed P2P network environments, respectively, 
to ensure fair peer assignment strategies for P2P file sharing applications. Extensive 
simulations confirm the efficacy, applicability, and extensibility of these approaches. 
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