
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 709
Copyright ⓒ 2010 KSII

This article is aimed at supplanting the previous conference version, presented in Proceedings of the 12th Int’l Conf.
on Advanced Communication Technologies (ICACT 2010), Phoenix Park, Korea, February 7-10, 2010. This
article contains fully materials of extended scheme design and development, algorithmic forms, newly extensive
performance evaluation, and a review of related works. This work was supported in part by the National Science
Council of Taiwan, R.O.C., under Contracts NSC98-2221-E-008-041 and NSC99-2221-E-008-011.

DOI: 10.3837/tiis.2010.10.002

Fair Peer Assignment Scheme for
Peer-to-Peer File Sharing

Chih-Lin Hu1, Da-You Chen1, Yi-Hsun Chang1 and Yu-Wen Chen2
1 Department of Communication Engineering, National Central University

Taoyuan, Taiwan 32001 – R.O.C.
[e-mail: clhu@ce.ncu.edu.tw; {955003009, 975203043}@cc.ncu.edu.tw]

2 Department of Electrical Engineering, Columbia University
New York, NY 10027 – USA.

[e-mail: cheneva00@gmail.com]
*Corresponding author: Chih-Lin Hu

Received July 9, 2010; accepted August 20, 2010;

published October 30, 2010

Abstract

The reciprocal virtue of peer-to-peer networking has stimulated an explosion of peer
population and service capacity, ensuring rapid content distribution in peer-to-peer networks.
Critical issues such as peer churn, free riding, and skewed workload significantly affect
performance results such as service agility, fairness, and resource utilization. To resolve these
problems systematically, this study proposes a peer assignment scheme that supports fair
peer-to-peer file sharing applications. The proposed scheme exploits the peer duality of both
server-oriented peer capacity and client-oriented peer contribution. Accordingly, the system
server can prioritize download requests and appropriately assign server peers to uploading file
objects. Several functional extensions, including peer substitution and elimination, bandwidth
adjustment, and distributed modification, help cope with subtle situations of service starvation
and download blocking, and hence make the system design robust and amenable. Simulation
results show this design is examined under both centralized and distributed peer-to-peer
environments. Performance results confirm that the proposed mechanisms are simple but
effective in maintaining service agility and fairness, without loss of overall service capacity in
peer-to-peer files sharing systems.

Keywords: Peer assignment, peer management, file sharing, content distribution, P2P

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 710

1. Introduction

Peer-to-peer (P2P) networking technology has recently emerged as a new variant of the
distributed computing paradigm for building distributed networked applications. With the
proliferation of P2P applications, a major portion of today’s Internet traffic is generated by
P2P file sharing applications [1]. P2P networking differs from traditional client/server
networking in several aspects, including peer duality, service capacity, peer churn, overlay
organization, free riding, etc. Perhaps the intrinsic difference is peer duality, in that each peer
plays a dual role of both service provider (server) and a consumer (client) of the implemented
service [2]. In many P2P file sharing applications [3], like Napster, Gnutella, KaZaA,
Morpheus, eDonkey, and BitTorrent, a peer requests files from its peers, and also stores and
serves files to its peers. Increasing the peer population not only increases the workload, but
also produces a concomitant increase in service capacity to process the request workload [4].
In a traditional network, however, clients and servers are distinct. An increase in the client
population simply increases the workload, inducing the scalability problem and degrading
performance. Thus, peer duality distinguishes P2P networking from traditional client/server
networking.

Peer churn, which represents the dynamics of peer participation in a system1, significantly
influences overlay design, resiliency, and assessment [5][6]. Peers in a system cooperate to run
an application-level overlay network [7] that provides connectivity, signal messaging, routing,
discovery, and searching between end hosts that are addressable on top of IP communication
networks. An ideal P2P overlay is autonomous, with self-organization and self-management
against peer churn. An ideal P2P overlay is also resilient, with fault detection and repair
facilities. However, due to peer autonomy and mutual dependency, peer transiency and its
implications have a great effect on the efficacy of replication, search, and query mechanisms
in content distribution [8][9].

The problem of free riding in a P2P system negates the reciprocal provision of resources
among peers. This problem is separate from the concept of traditional distributed applications.
Free riding is irrelevant to P2P networking, but inherits from P2P participants’ attitudes of
mind. A large percentage of the peer population consists of free riders - maximizing their own
utility disproportionate to their contribution to the system [10][11]. Unfortunately, free riders
take advantage of generous peers by consuming service capacity. If no request admission or
scheduling policy is enforced to maintain service fairness, generous peers often become
frustrated and refuse to contribute anymore [12]. Some studies propose incentive approaches
to encourage peer contribution and guarantee service fairness [13][14]. The growing
recognition of reputation systems has generated significant research in this area, as Section 2
shows. Reputation-based schemes determine service priorities based on the histories of peer
contributions to the system [15]: reputable peers receive high priority and are rewarded more
resources to compensate for their contribution.

This study systematically addresses the issues of peer churn, free riding, and workload
dynamics, and considers the dual factors of server-oriented peer capacity and client-oriented
peer contribution in a P2P computing context. This study designs a fair peer assignment
scheme for file sharing in a dynamic P2P network environment. The proposed scheme

1 A peer’s lifespan is transitory because a peer can freely join in the system, be active for some time, and then go

off-line, unpredictably removing itself from the system.

711 Hu et al.: Fair Peer Assignment Scheme for Peer-to-Peer File Sharing

maintains service agility and fairness among peers in response to peer churn and free riding.
The basic concept here is to gradate client-oriented peer contribution and server-oriented peer
capacity based on uploading capacity and downloading bandwidth, respectively. The system
server performs peer management that records peers’ uploading and downloading behavior.
Based on request workload, the system server applies specific peer assignment strategies to
control the request admission and scheduling processes to guarantee fair and efficient use of
resources without decreasing overall system throughput. Therefore, the results of this study
are summarized as follows.
 This study formulates the measures of peer contribution and capacity. In light of

indirect-reciprocity notion [13], a basic peer assignment strategy (PAS) is designed to
choose server peers to process download requests in descending order of peer
contribution.

 The advanced peer assignment strategy (APAS), which extends PAS with a specific
substitute policy, can modify peer assignment in response to the traffic dynamics created
by peer churn and varying request workload.

 The APAS is associated with a specific peer elimination process (APAS-E) to cope with
possible service starvation and further boost the ability of service differentiation and
fairness.

 The extended design of a distributed APAS (D-APAS) is applicable to large-scale
partially-centralized and structured P2P environments [3]. This design includes two kinds
of tracker-oriented and peer-oriented D-APAS schemes that maintain the functionalities
and effects mentioned above.

 The experimental simulations in this study assess performance sensitivities in terms of
several measure metrics, average download time, ratio of pending requests, download
count, and download ratio by contribution range. This study also compares the two kinds
of D-APAS in terms of communication overhead.

Consequently, this study presents a systematic methodology that provides a basic peer
management mechanism and an advanced peer assignment strategy with several auxiliary
functions. The proposed design protects system throughput, service agility, and fairness
against service starvation and varying traffic dynamics in P2P networks. The proposed design
is suitable for both centralized and distributed P2P file sharing systems.

The rest of this article is organized as follows. Section 2 reviews a number of related studies
on P2P file sharing applications. Section 3 describes the P2P system model. Section 4 details
the proposed PAS, APAS, APAS-E, and D-APAS. Section 5 presents the performance results,
while Section 6 provides the conclusion.

2. Related Work

The astounding growth of P2P file sharing applications has accelerated the spread of
multimedia contents, typically music and video categories, throughout the Internet. The
success of the P2P paradigm is dependint on its users’ altruistic provision and reciprocal
cooperation in sharing storage and computation resources. However, peers in a P2P system
have different resources, capabilities, and user attitudes. The egoistic users, i.e., free riders that
exist in any P2P system [10], make a utopian P2P society impossible.

The free riding problem – which is not a networking or system issue, but originates from
user behavior – is difficult to resolve in P2P systems [16][17]. Rational participants may
refuse to contribute their fair share of resources, and only seek to maximize their own utility.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 712

Thus, individual rationality conflicts with social welfare. As reported in [11], Gnutella and
Napster systems have many free riders, who represent about 70 % all peers.

Different incentive approaches encourage peers to contribute to the system [13]. Monetary
payment schemes dictate that service recipients must pay service providers for the resources
they consume [18]. Many P2P file-sharing systems use the game theory, e.g., the Nash
equilibrium [19], to study the potential benefits of micro-payment methods [20]. However,
this scheme has the critical premise of requiring an accounting and micro-payment
infrastructure, which is impractical in an open P2P network [21][22]. Reciprocity-based
schemes use the histories of peers’ contributions to the system as decision making processes
[15], and map peers’ reputation scores to admission and resource allocation strategies [17][23].
Reputable peers enjoy higher priority and are rewarded with more resources to compensate for
their contributions. Previous research [3][7] shows that the growing recognition of reputation
systems [15] has created a significant amount of research on this topic. The following
discussion review some of the incentive mechanisms in BitTorrent and many other P2P
applications.

In reciprocity-based schemes, peers maintain the histories of the past behavior of other
peers and use this information in their decision making processes. These schemes can be based
on direct reciprocity or indirect reciprocity. Direct-reciprocity schemes are appropriate for
applications with long session durations, as they provide ample opportunities for exchanging
information between pairs of peers. Typical examples are BitTorrent-like applications that
employ the tit-for-tat incentive mechanism [24], in which a peer only reciprocates to peers that
allow it to download; in this case, uploading is a part of the protocol in the rarest first and
choke algorithms [25]. Nevertheless, BitTorrent still has inherent choking issues. Though it
can be moderated by the associated optimistic unchoking method which randomly probes a
new connection to upload, the increase of free riders strikes a trade-off, as reported in [26].
Many studies [20][27][28][29][30] are dedicated to tackle the free-riding problems in
BitTorrent.

Indirect-reciprocity schemes, a.k.a. reputation-based schemes [15][23][31][32], differ
from direct-reciprocity schemes not only in computing reputation score/credit of how much a
peer has contributed to the system, but also in the mapping of scores to different admission and
allocation strategies. Reputation scores among peers can be pre-computed based on the history
of peer behavior, and maintained by any reputation system that performs in an out-of-band
manner. Reputation-based schemes are relatively robust against misbehaving or malicious
peers, and sustainable for P2P systems with large peer populations, highly dynamic
memberships, and infrequent repeat transactions. Through reputation differentiation,
reputable peers have the right of priority service. Exmples include better quality of service and
user experience, prioritized download capacity, or fast query/response. A punishment policy
may be imposed on disreputable peers using different punitive levels based on the free-riding
severity. For example, this policy may limit the propagation of their messages, ignore their
queries, or even disconnect malicious or unproductive peers from the network [17].

On the other hand, query or search mechanisms are important in a P2P system. In highly
structured P2P systems, e.g., DHT and Chord [7], seraching for an object is strictly based on
its logical object identifier, and is usually done in log(n) steps. However, protecting this
structure from peer churn is costly and incurs a significant overhead, when the system is highly
dynamic. Moreover, structured P2P systems have difficulty of implementing complex queries,
such as keywords-based search and regular expression-based search. In contrast, less
structured or unstructured systems have lower maintenance complexity and can adapt to node
heterogeneity and network dynamics. These systems locate files independent of the system

713 Hu et al.: Fair Peer Assignment Scheme for Peer-to-Peer File Sharing

topology by resorting to “near blind” query strategies such as flooding, random walks,
k-random-walks, iterative deepening, breadth-first search (BFS), and deepth-first search (DFS)
techniques [33][34]. However, there are two problems with these search mechanisms. On one
hand, a peer often receives duplicate query messages. This highlights the need to study
potential approaches to reducing search overhead and query response time [35][36][37][38].
On the other hand, when a high-degree peer maintaining P2P connectivity is overloaded,
queries should be directed toward other peers by taking server peer capacity into account.

Peer duality, which means that each peer is both a client peer and a server peer, is a special
feature that distinguishes the P2P file sharing paradigm from other distributed systems.
Reciprocal provision among peers effects the spread of file replications, increases the file
volume, and improves the service capacity of the network. Previous studies address how the
free riding problem affects service unfairness. Though free riders may not reduce system
throughput, they may unfairly occupy or utilize system resources [2]. The traced-based
analysis in [4] shows that service capacity, i.e., average throughput, in a P2P network
experiences exponential growth until it reachs the steady state. The sensitivity of this growth is
practically related to file segmentation, peer selection, access admission and scheduling policy,
and traffic dynamics.

Previous studies [2][4] serve as the motivation for this study to develop a simple peer
assignment strategy that considers the dual factors of peer contribution and capacity in
conventional P2P systems. The basic strategy aims to schedule download requests based on
peer contributions and assign appropriate server peers in charge based on peer capacity.
Several auxiliary functions sustain performance against service starvation and traffic
dynamics [9]. This study further applies the proposed strategy, with uncomplicated
modifications, in distributed P2P systems, and achieves the same effect. Therefore, this study
presents an advanced peer assignment strategy capable of guaranteeing service agility and
fairness in dynamic P2P environments.

3. System Modeling

This section describes a conventional P2P system environment, and specifies the bandwidth
resource utilization and peer state management used for resource allocation and content
distribution in P2P file sharing applications.

3.1 System Environment

Fig. 1 shows a centralized, structured P2P system environment [3] on which this proposal is
based. Specifically, there is a central server that performs the functions of tracking, peer
assignment, and service provision to support distributing file segments within a P2P network.
A tracker server is located in a central server or another dedicated host attached to a central
server2. This tracker server maintains a segment meta-data repository and performs segment
management and peer management in the system. Fig. 2 shows that a tracker server provides
the volumes of segment meta-data records, each of which includes a segment index, available
location references, and other attributes. For every segment, the tracker records a set of peers
that own this segment, and manages these peers by referring to their states in service. Thus,
every peer connects to the central server and inquires about where any indicated segment can
be downloaded. The server promptly processes data access to the meta-data repository, and

2 Consider that a central server is coupled with a dedicated hosting tracker inside a P2P domain. Without ambiguity,
the roles of a hosting server and its tracker can be used interchangeably in the rest of this article.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 714

then selects one out of many server peers according to a specific peer assignment strategy.
With a request reply, a client peer directly connects to its assigned server peer to access the
indicated segment. Then, with a pair of client and server peers, the central server can monitor
the download/upload sessions and adjust bandwidth allocation in a timely manner. In addition,
the server peer can record the download state of every requested segment, remaining upload
bandwidth, and uploading contribution into its property profile.

query

Client

Peer Assignment Strategy

 Tracker

Bandwidth Control

Server

Client

Contribution

Upload State

Download State

Client Property

reply

monitoring

metadata

connect /
download / upload

Capacity

Fig. 1. A centralized, structured P2P file sharing context.

Peer ManagementSegment Management Segment Meta-data Repository

activesleepidle leisurenormalbusy

Tracker

Owner
Set

download state upload state

state

Fig. 2. A tracker functional reference.

3.2 Resource Utilization

The P2P system enforces the premise that the granularity of upload and download bandwidth
utilization is based on a slotted time model. Each time slot has a minimal transfer rate μ as a
base unit of bandwidth allocation. Accordingly, each file is divided into a number of
equally-sized segments; it takes one time slot to deliver each file segment.

For simplicity, let a peer Pi have uniform upload and download bandwidth capacities with a
maximal data transfer rate μi. In this case, Pi can at most offer μi / μ transfer sessions
simultaneously in either download or upload way. Peers that have a remaining transfer rate of
less than μ will not be allowed to request or offer any segments until they have sufficient
bandwidth. This precondition facilitates the analysis of bandwidth granularity.

Selecting a fit server peer is a decisive step before a client peer starts to download any
segment. The system performs peer management based on bandwidth availability.
Specifically, the following definitions provide the update and download states of each peer.

715 Hu et al.: Fair Peer Assignment Scheme for Peer-to-Peer File Sharing

Definition 1 (upload state) A server peer falls into one of three states: busy, normal, and
leisure. A busy peer is unable to supply any more segments because its remaining upload
bandwidth is less than μ. A normal peer is uploading segments to other peers and has a
remaining upload bandwidth higher than μ. A leisure peer has an upload bandwidth higher
than μ, but is not currently uploading any segments.

Definition 2 (download state) A client peer falls into one of three states: active, sleep, and
idle. A download state is active when a peer requests a segment, successfully finds it, and
negotiates with a server peer to process the downloading. If a server peer is found, but
unavailable temporarily, the state is set to sleep. Otherwise, a peer is idle if no requests are
pending or no server peer is found.

Table 1. Symbols used in the peer assignment strategy.
Symbol Meaning

μ the low bound of available data transfer rate for uploading or downloading a segment
n the amount of peers in the system
Pi peer identifier, for i=1, 2, 3,…, n
Sk segment identifier, for i=1, 2, 3,…, m
ri

k the request for downloading Sk sent by a peer Pi
Ci the contribution of a peer Pi for file segment distribution

ULpast(i) the number of segments which a peer Pi had uploaded in the past
ULnow(i) the number of segments which a peer Pi is uploading now

R(i) the set of segments which a peer Pi is asking for in response to its pending requests
H(Sk) the set of peers which have Sk within a specific tracker’s domain
B(Sk) the set of segments which peers in H(Sk) are delivering

H*(B(Sk)) the candidate set of substitute server peers which have at least a segment belonging to B(Sk)
Gi the average upload bandwidth which a server peer Pi can now offer

O(s) the set of segments which a substitute peer Ps owns
μi the total upload/download bandwidth which Pi owns

I(Sk) the relative immediacy of segment Sk to be uploaded first in the system
Di a P2P domain identifier, for i=1, 2, 3,…, t
Ti a tracker identifier, for i=1, 2, 3,…, t

TG the group of all trackers in the system as considered
Ti(Sk) the corresponding/hosting tracker Ti which handles the request ri

k
H*(TG) the set of potential substitute server peers reported from trackers in TG

P*s the optimal one out of substitute server peers in the system

4. Peer Assignment and Management Strategies

This section consists of two parts. The first part proposes peer assignment strategies in a
centralized P2P model, and the second adapts these designs to provide distributed versions in a
large-scale P2P model. Section 4.1 formulates the measures of a client peer’s contribution and
server peer’s grading of bandwidth capacity, which are both used to differentiate request
priority and assignment among peers. Section 4.2 designs a basic peer assignment strategy
(PAS) in a centralized P2P model. Section 4.3 presents an advanced peer assignment strategy
(APAS) that extends the PAS with a substitute policy for peer assignment. Section 4.4
integrates APAS with a peer elimination and bandwidth reclamation method (APAS-E) to
guarantee fair bandwidth allocation. Furthermore, Section 4.5 remodels the APAS and
APAS-E as D-APAS. Section 4.6 describes a bandwidth adjustment method that can be
incorporated into APAS or D-APAS to cope with asymmetric bandwidth utilization. Finally,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 716

this study presents a joint design of peer assignment and management mechanism to protect a
P2P system from peer churn and free riding.

To ease of exposition in this section, Table 1 lists the meanings of symbols used in the
proposed scheme. These denotations are identical in both centralized and distributed P2P
systems unless special notes are given to discern the working domain that corresponds to a
specific hosting server/tracker.

4.1 Peer Contribution and Grading

The proposed peer assignment and management strategy adopts an incentive-based approach
to encourage peers to contribute their own resources to achieve better performance. Notice that
the direct-reciprocity and tit-for-tat incentive approaches in BitTorrent-like applications have
inherent choking issues [26]. The proposed scheme adopts an indirect-reciprocity-based
incentive approach that refers to the historical and accumulated contributions of upload
bandwidth voluntarily provided by the peer. Without loss of generality, the measure of peer
contribution is given by a linear formula of a peer’s previous contribution:

),1()()(  iULiULC nowpasti (1)

where ULnow is the number of segments which a peer is uploading now, ULpast is the number of
segments that a peer has uploaded in the past, and 0≤ α ≤1 is a tunable parameter of relative
weighting between the two terms. The terms ULpast or ULnow can be emphasized as desired.
Weighting ULpast favors a peer that stays in the system for a long time. Comparatively,
weighting ULnow favors a peer that has superior upload capacity, popular segments, or contains
more segments in its local storage. Equation (1) shows that the central server prioritizes
download requests from client peers.

On the other hand, in processing upload bandwidth allocation, a central server decides
which server peer should serve client peer’s requests by considering the grading of upload
bandwidth capacity that a server peer can provide to its client peers, given by

.),1)(/(  inowii GandiULG (2)

4.2 Basic Peer Assignment Strategy (PAS)

The PAS considers both service fairness and agility during peer selection. Basically, PAS
appoints server peers to take the request workload in descending order of peer grading, and
schedules requests in descending order of peer contribution. PAS sets a minimal bound μ of
available upload and download bandwidth to improve download speed. A request from a client
peer of the highest Ci is handled first. Then, the server peer with the highest Gi deals with this
request. Thus, PAS can simply and evenly balance the use of upload bandwidth capacities
among peers and avoid bandwidth fragmentation throughout the system.

Fig. 3 illustrates the PAS procedure. Given a peer Pi whose download bandwidth is higher
than μ, Pi sends the central server a request ri

k to download a segment Sk. With a ri
k, the tracker

generates a peer set, called H(Sk), that includes all peers having Si
k in their local storages. Then,

the server selects the server peer Pr with the highest upload rate in H(Sk) using PAS. If Pr’s
upload bandwidth is not lower than μ, the server notifies Pi of its server peer Pr in charge. Pi
then negotiates with Pr for downloading Sk. If Pr does not have enough upload bandwidth to
serve this request at this moment, the server will mark Pi’s download state as sleep and push
this request back into the request queue. The server later checks if ri

k is valid yet. Algorithm 1
presents the PAS’s algorithmic form for reference.

717 Hu et al.: Fair Peer Assignment Scheme for Peer-to-Peer File Sharing

Pr

H(Sk)

PAS

1
Pi

2

3

4

5

6

7
8

Server
(Tracker)

server peer

client peer

Fig. 3. A basic peer assignment strategy.

Algorithm 1: Basic Peer Assignment Strategy

1: Input: R(i) ≠ {}, H*(B(Sk)) ={}, Pr = null
2:
3:

Output: Pr : Pi’s designated server peer
Begin

4: R(i) ← getRequestSet(R(i));
5: K ← getNumOfSegments(R(i));
6: for Sk  R(i) and k ← 1, K do
7: H(Sk) ← findPeerSet(Sk , AllPeers);
8: H(Sk) ← sortGrade(H(Sk) , );
9: Pr ← getFirstPeer(H(Sk));

10: if Grade(r)  μ then  Pr’s grading
11: startDownload(Pi , Pr , Sk);
12: else  APAS Strategy – Substitute policy
13: doAPAS_SubstitutePolicy(Sk , H(Sk));  Refer to Algorithm 2
14: end if
15: end for
16: End

4.3 Advanced Peer Assignment Strategy (APAS)

The APAS modifies PAS with functional extensions to support “concurrent” and
“non-blocking” downloading mechanisms. The tie-in “substitute policy” on peer assignment
not only sustains fairness and throughput, but also alleviates the service starvation problem
due to dynamic changes of skewed access workload and peer churn in a dynamic P2P context.

4.3.1 Concurrent Downloading

Given a number of pending requests from a peer Pi in queue, the central server has a set of all
segments requested by Pi, denoted as R(i). As in PAS, for each Sk in R(i), the server quickly
finds a server peer from H(Sk) for uploading Sk. If R(i) contains more segments, this process
repeats itself until Pi’s remaining download bandwidth is less than μ. The processing sequence
of requests in R(i) may depend on any specific schedule, such as first-in-first-out (FIFO),
earlier deadline first (EDF), high download speed first, etc. However, the analysis of request
scheduling methods is orthogonal to this study. For simplicity, assume that every request is
subject to the same processing deadline. The proposed scheme adopts the FIFO simply as a
development baseline.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 718

4.3.2 Non-blocking Downloading

In PAS, there is a critical situation of download blocking due to “service starvation.” This
situation - with no uploading of any segment Sk in R(i) - does not mean that a requested
segment does not exist in the system. A heavy request workload for scarce segments, peer
churn, and skewed access patterns can all induce this problem, especially when traffic
dynamics is considered. When all peers owning a segment Sk in R(i) are in the busy state, they
have no more bandwidth to upload. All requests for R(i) are then blocked until any Pr in H(Sk)
reclaims sufficient upload bandwidth to accept a new request. This increases the likelihood of
PAS failure due to service starvation, resulting in poor performance. The next subsection
presents a peer substitute technique to cope up with this situation.

4.3.3 Substitute Policy

The peer assignment scheme employs a peer substitute policy to address the possibility of
service starvation. A substitute policy attempts to find a new substitute peer Ps to replace a
busy peer Pr in H(Sk) and take over its ongoing uploading tasks. The replaced peer Pr can then
reclaim more upload bandwidth and accept another request for some segment now held by Pr.
Note that this policy can alleviate the service starvation with respect to many influential
factors under dynamic traffic.

The following steps specify this substitute policy and its procedure (Steps 1-5) in reference
to Fig. 4. To ease exposition, Algorithm 2 shows the algorithmic form of the APAS with a
substitute policy.
Step 1: Let a request ri

k run into a download blocking case. The central server firstly assembles
a super set of segments, denoted as B(Sk), which all peers in H(Sk) are currently
delivering.

Step 2: For every segment Sl in B(Sk), the central server tries to find a candidate server peer Pl.
A peer qualifies as a candidate server peer if it is the one with the highest grade Gi out
of all peers that have Sl, and its grade is no less than μ. Therefore, the server has a set of
candidate server peers, denoted as H*(B(Sk)). The peer with the highest grade in
H*(B(Sk)) is then chosen as a substitute server peer Ps.

Step 3: When a Ps is determined, the central server tries to reclaim some upload bandwidth to
resolve the download blocking problem by using Ps to replace some peer in H(Sk).
Specifically, the server knows all segments owned by Ps, denoted as O(s). The server
checks every segment Ss in O(s): if Ss is included in B(Sk), at least one peer in H(Sk) is
currently uploading Ss to another peer in the system. In this case, the server collects a
set of client peers that are downloading the particular Ss, which simultaneously belongs
to both O(s) and B(Sk), from those peers in H(Sk).

Step 4: Among these client peers, the central server chooses the one with the highest peer
contribution as a “passed” client peer. Peer contribution is considered first because a
passed client peer may obtain better service after changing its server peer to the
substitute Ps. In case a Ps’s grade is less than its original server peer, the server may
alternatively check another Ps with lower Cs, but higher Gs.

Step 5: The server instructs a passed client peer to download Ss from Ps instead of its original
server peer in H(Sk). Then, the original peer regains some uploading bandwidth and
eventually commences uploading Sk to Pi.

Fig. 4 illustrates the usage of the substitute policy. Let H(Sk) include two peers, P1 and P2.
Initially, both P1 and P2 are in the busy state. P1 is delivering S1 to Px and S2 to another peer,
and P2 is delivering S3 to Py and S4 to another peer. B(Sk) now includes S1, S2, S3, and S4. The
server accordingly determines H*(B(Sk)), which includes all peers sending any segments in

719 Hu et al.: Fair Peer Assignment Scheme for Peer-to-Peer File Sharing

B(Sk). Let the server select Ps as a candidate server peer from H*(B(Sk)). Since Ps has S1 and S3,
the server checks H(Sk) and finds that two client peers Px and Py are downloading S1 and S3
from P1 and P2, respectively. The server selects Px or Py depending on who has the highest
contribution as the passed client peer. This passed client peer redirects its download from Ps
instead of its previous server peer. Eventually, either P1 or P2 in H(Sk) now has enough upload
bandwidth to accept another pending request in the queue.

Comparing contribution

P1

H(Sk)

P2

H*(B(Sk))

Ps

B(Sk)

Px Py

O(s)

S1 S3

1

2

3

4

S1 S3S2 S4

5

Redirect

R(i)

Server
(Tracker)

Fig. 4. The APAS with substitute policy.

Server
(Tracker)

Plow

Pi

P2P1

1

2

3

4

H(Sk)

Taking out Plow

5

6

7

8

Comparing Pi’s Ci with Plow’s Clow

Fig. 5. The APAS with peer elimination.

4.4 APAS with Peer Elimination (APAS-E)

In APAS, there is a subtle situation in which a central server cannot find any suitable substitute
server peers, since none of peers in H*(B(Sk)) have enough remaining upload bandwidth. This
study devises a peer elimination method to address this problem. The proposed method
attempts to reduce or cancel a peer’s ongoing downloading if this peer has low contribution,
such as a free rider. That is, a peer with a higher contribution can preempt a downloading
session for the sake of fair resource allocation.

Fig. 5 shows the procedure of APAS with peer elimination in reference to Algorithm 3.
Based on the previous example in Fig. 4, suppose that the central server cannot find a

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 720

substitute server peer Ps to upload a particular Sk in R(i). The server further checks all potential
server peers in H(Sk) and their client peers. Among these client peers, the Plow with the lowest
contribution is selected to compare with Pi. If Pi’s contribution is higher than Plow’s, Pi will
replace Plow to use upload bandwidth from P1, given that Plow downloads Sk from P1. The server
cancels Plow’s ongoing download, and instructs Plow to resend a request for Sk, or alternatively
defers its download until another server peer becomes available.

Algorithm 2: Advanced Peer Assignment Strategy with Substitute Policy

1: Procedure DoAPAS_SubstitutePolicy(Sk, H(Sk))
2:
3:

 B(Sk) ← findSegmentSet(H(Sk));
 l ← getNumOfSegments(B(Sk));

4: for Sl  B(Sk) and l ← 1, L do
5: H(Sl) ← findPeerSet(Sl , AllPeers);
6: H(Sl) ← sortGrade(H(Sl) , );
7: Pl ← getFirstPeer(H(Sl));
8: if Grade(l)  μ then
9: H*(B(Sk)) ←H*(B(Sk))  Pl ;

10: end if
11: end for  A candidate set of substitute peers
12: if H*(B(Sk)) ≠ {} then
13: H*(B(Sk)) ← sortGrade(H*(B(Sk)) , );
14: Ps ← getFristPeer(H*(B(Sk)));  Ps: a substitute peer
15: O(s) ← findSegmentSet(Ps);
16: M ← getNumOfSegments(O(s));
17: for Ss  O(s) and s ← 1, M do
18: if Ss B(Sk) then
19: H(Ss) ← findPeerSet(Ss , H(Sk));
20: H(Ss) ← sortContribution(H(Ss) , );
21: Pt ← getFirstPeer(H(Ss));  Pt: a passed client peer
22: Pr ← findServerPeer(Pt , Ss);
23: setServerPeer(Pt , Ps , Ss);  Set Ps as Pt’s new server peer
24: startDownload(Pt , Ss);
25: startDownload(Pi , Pr , Sk);
26: break;
27: end if
28: end for
29: else  APAS Strategy – Elimination
30: doAPAS_Elimination(Sk , H(Sk));
31:  Refer to Algorithm 3
32: end if
33: end procedure

Algorithm 3: Advanced Peer Assignment Strategy with Peer Elimination

1: Procedure DoAPAS_Elimination(Sk , H(Sk))
2:
3:

 H(Sk) ← sortContribution(H(Sk) , );
 Plow ← getLastPeer(H(Sk));

4: if Pi’s Ci > Plow’s C(low) then

721 Hu et al.: Fair Peer Assignment Scheme for Peer-to-Peer File Sharing

5: Pr ← findServerPeer(Plow , Sk);
6: stopDownload(Plow , Sk);
7: startDownload(Pi , Pr , Sk);
8: else  Pr= null
9: Unsuccessfully! Pi’s request for Sk;

10: end if
11: end procedure

4.5 Distributed Peer Assignment

Further modification allows distributed peer assignment strategies to be used in large-scale
distributed P2P networks. The APAS and APAS-E with uncomplicated modifications are still
compatible with distributed P2P systems. This subsection describes large-scale distributed
P2P network environments and designs two tracker-oriented and peer-oriented approaches for
distributed APAS, called D-APAS for brevity.

4.5.1 Partially-Centralized and Structured P2P Environment

The practical deployment of a large-scale P2P system is usually based on the
partially-centralized and structured P2P model, such as the P2P overlay categories in [3].
Such a P2P system consists of a number of smal-scale centralized and structured P2P systems,
which accord with the conventional system described in Section 3.1. Every small P2P system
is referred as a domain Di, and contains a hosting tracker Ti in charge of peers that exist in this
domain. Trackers from external P2P domains form and communicate in a tracker group TG,
called a “closed tracker network.” In this network each tracker acts as a local cental directory
for peers in its local domain. When a peer Pi in Di requests a segment Sk, Ti(Sk) represents the
hosting tracker that handles this request. Each tracker can forward queries and downloading
requests to other trackers over the tracker network. Although an unstructured P2P system is
somewhat workable in a small-scale network, combining many unstructured P2P systems into
a large one is inpracticable due the drastic increase of message workload and tremendous
search requests flooding the system. Instead, the proposed D-APAS is based on a
partially-centralized and structured network architecture.

Tt

Ps

Tracker Network

T1 Tt
.

P*s

Domain 1 Domain i

Pr

1

2

3

45
Domain t

.

H
ig

h-
T

ie
r

Lo
w

-T
ie

r

Pi

Px

x

Fig. 6. Distributed peer assignment strategies in a large-scale P2P network.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 722

Fig. 6 illustrates this reference architecture, which introduces a new tracker network. A
tracker group consists of many trackers that enforce PAS, APAS, and APAS-E in their P2P
domains. Trackers communicate with other trackers to collabrate on D-APAS over the tracker
network. Due to a varity of architectural and protocol dependencies, the design of a tracker
network overlay is beyond the scope of this study. Since a tracker network is relatively small,
without complication, this design plainly refers to a simple request/response messaging
protocol by unicasting and broadcasting. This type of network commonly appears in many
BitTorrent-like P2P applications. Consequently, the P2P netwok archiecture can be regarded
as an instance of a two-tier system archtecture.

4.5.2 Distributed APAS (D-APAS)

The D-APAS attempts to augment the effects of APAS and APAS-E, as described in Sections
4.3 and 4.4, in a large-scale P2P network environment. D-APAS is applied into local and
external P2P domains, simultaneously and collectively, to deal with service fairness,
throughput, and starvation in a distributed manner. Note that the basic PAS procedure within a
local domain remains unchanged. What is mainly modified in D-APAS is the procedure of
generating a set of candidate server peers, i.e., H*(B(Sk)), from a tracker group instead of a
singular tracker, as compared in Step 2 in Section 4.3.3. In addition, D-APAS is based on
several assumptions.
 A peer is able to communicate with more than one tracker to operate different queries

and downloading requests.
 When a peer has completely downloaded any requested segment through some

tracker’s coordination, this peer becomes linked to the domain of that tracker. In other
words, a peer can concurrently belong to multiple domains, hosted by different
trackers, from which this peer has downloaded different segments.

 Every tracker is not only responsible for offering the segments kept its local domain,
but can also deliver to and receive from other trackers specific request/response
messages to perform distributed tasks.

In reference to Fig. 6, the following steps describe the designs of D-APAS and its procedure
(Steps 1-5). To ease presentation, Algorithm 4 shows the algorithmic form of the D-APAS.
Initially, D-APAS will start in case that a peer Pi with request ri

k runs into a downloading
blocking situation.
Step 1: The hosting tracker Ti(Sk) first determines H(Sk), including peers in Di that own Sk, and

then generates B(Sk), i.e., a super set of segments which all peers in H(Sk) are currently
delivering. (This step is similar to Step 1 in Section 4.3.3)

Step 2: With B(Sk), Ti(Sk) attempts to determine an optimal substitute server peer P*s in the
distributed P2P system. In doing so, Ti(Sk) not only finds a local substitute server peer
in Di, but also asks other trackers to find and report external substitute server peers,
respectively. Thus, Ti(Sk) gathers a set of all potential substitutes H*(TG) from all
trackers in TG. The peer with the highest grade in H*(TG) is chosen as P*s. Remember
that every tracker follows the same process in Step 2 in Section 4.3.3 to find a potential
substitute within its domain.

To produce P*s, the development of D-APAS presents the tracker-oriented and the
peer-oriented methods, respectively described as follows.
 Tracker-oriented method: The hosting tracker Ti(Sk) appeals to all external

trackers in the tracker network to collaboratively find P*s. The procedure of this
method is specified below.

Firstly, Ti(Sk) broadcasts H(Sk) to other trackers in the tracker network. Every

723 Hu et al.: Fair Peer Assignment Scheme for Peer-to-Peer File Sharing

external tracker Tx checks if there are any peers in H(Sk) which also exist in its
domain Dx. If no peer is found, Tx sends a negative report to Ti(Sk). If some peers
in H(Sk), denoted as Hsub(Sk), are found in Dx, Tx assembles a subset of B(Sk),
denoted as Bsub(Sk), which peers in Hsub(Sk) are concurrently delivering.

Next, Tx tries to find a candidate server peer for every segment in Bsub(Sk). Tx
then has a set of candidate server peers, H*(Bsub(Sk)). The peer with the highest
grade is regarded as the potential substitute Ps in Dx. Thus, Tx reports Ps to
Ti(Sk).

Finally, since all external trackers perform the above process simultaneously,
Ti(Sk) can receive a numer of reports from external trackers. Accordingly, Ti(Sk)
figures out the optimal substitute P*s.

 Peer-oriented method: The hosting tracker Ti(Sk) requests local peers in H(Sk) to
report a list of potential trackers which Ti(Sk) will later ask to collaboratively
find P*s. The procedure of this method is given below.

Firstly, in light of H(Sk) and B(Sk), Ti(Sk) asks each peer in H(Sk) to report a
list of pairing records <segment, tracker> = <Sx, Tx>. A pairing record means
that a peer in H(Sk) is delivering a segment Sx in B(Sk) under a tracker Tx’s
coordination. Thus, Ti(Sk) learns a subset of potential trackers TGsub that are
responsible for delivering B(Sk).

Next, Ti(Sk) informs each potential tracker Tx in TGsub of its corresponding
segments Bsub(Sk). While receiving Bsub(Sk), Tx reflectively knows Hsub(Sk) in Dx.

Subsequently, Tx performs the same procedure as mentioned above to
determine H*(Bsub(Sk)) and a potential substitute Ps in Dx. Ti(Sk) picks out P*s
from all potential trackers’ reports of their potential substitutes.

Note that the tracker-oriented and the peer-oriented method have the same effect of
finding P*s although they have different messaging and computation overheads. The
following section examines their relative performance.

Step 3: When a P*s is determined, Ti(Sk) tries to reclaim some upload bandwidth to resolve the
downloading blocking by using P*s to replace some peer Pr in H(Sk). Since this step is
similar to the procedure of Step 3 and Step 4 in Section 4.3.3, the details of this step are
omitted here.

Step 4: Ti(Sk) determines a passed client peer Px and redirects it to download an indicated
segment from P*s instead of the original server peer Pr.

Step 5: Pr thus regains some uploading bandwidth, and eventually begins uploading Sk to Pi.

Algorithm 4: Distributed Advanced Peer Assignment Strategy
1: Procedure Do_D-APAS_OptimalSubstitute (Sk, H(Sk), Ti(Sk,))
2: B(Sk) ← findSegmentSet(H(Sk));
3: if TrackerOrientedMethod is True then
4: t ← getNumOfTrackers(TG);
5: for Tt  TG and t ← 1, T do
6: Ps ← findPotentialSubstitute_CBF(H(Sk), B(Sk), Tt , Dt);
7:  CBF(): a call-back-function
8:  This function is similar to Lines 1-14 in Algorithm 2
9:

10: H*(TG) ← H*(TG)  Ps ;
11: end for
12: else  PeerOrientedMethod

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 724

13: n ← getNumOfPeers(H(Sk));
14: for Pn  H(Sk) and n ← 1, N do
15: L<S,T> ← getListOfPotentialTracker(Pn);
16: TGsub ← TGsub  L<S,T>;
17: end for
18: t ← getNumOfTrackers(TGsub);
19: for Tt  TGsub and t ← 1, T do
20: Ps ← findPotentialSubstitute_CBF(Hsub(Sk), Bsub(Sk), Tt , Dt);
21: H*(TG) ← H*(TG)  Ps ;
22: end for
23: end if
24: if H*(TG) ≠ {} then
25: H*(TG) ← sortGrade(H*(TG) , );
26: P*s ← getFristPeer(H*(TG));  P*s: an optimal substitute
27: ……
28: /* The omitted code is the same as Lines 15-28 in Algorithm 2 */
29: ……
30: Else
31: doASAP_Elimination(Sk, H(Sk));
32:  Refer to Algorithm 3
33: end if
34: end procedure

4.6 Bandwidth Adjustment and Feedback

Peer assignment inevitably addresses the potential issue of asymmetric bandwidth allocation
in a dynamic P2P context. According to the flat bandwidth allocation above, the hosting
server/tracker can estimate the upload bandwidth that a server peer assigns to a client peer
based on the server peer’s grade. In practice, a client peer can have more, equal, or lower
unoccupied download bandwidth than its server peer’s upload bandwidth. Thus, asymmetric
bandwidth allocation can cause lower resource utilization and longer transfer time. This
problem calls for a dynamic bandwidth adjustment method capable of tackling the different
asymmetric scenarios caused by variances in request workload, access pattern, peer churn, etc.
Ideally, the server should be able to reclaim unused and surplus bandwidth resources, and
reallocate them based on the relative contributions of client peers. Client peers with higher
contributions can obtain more bandwidth resources, achieving efficiency and fairness in
bandwidth utilization.

The following discussion explains the dynamic bandwidth adjustment method. This design
controls several factors, including segment access popularity, segment replication and scarcity,
request workload, and service utilization based on the amount of pending requests, in a
dynamic P2P context. In the spirit of the P2P paradigm and from a causality standpoint,
distributing the rare/scarce segments requested by many pending requests should be
considered first to avoid dropping requests. Client peers can commonly request a particular
segment, but often get stuck in sleep and idle states, even though the aforementioned substitute
policy is used. This phenomenon indicates that the overall supply of upload bandwidth for this
segment falls short of demand, and implies an insufficient amount of server peers. In this case,
the server should find new or more peers to contribute to this segment. Accordingly, the
following measure calculates the relative “immediacy” of any segment Sk in the system. The
segment of the largest value of I(Sk) should be uploaded first.

725 Hu et al.: Fair Peer Assignment Scheme for Peer-to-Peer File Sharing

,
)(

)()(
)(

k

kk
k SH

SidleSsleep
SI


 (3)

where the term |H(Sk)| indicates the cardinality of H(Sk), i.e., the number of peers having Sk in
the system, and |sleep(Sk)| and |idle(Sk)| represent the number of peers asking for Sk in the sleep
and idle states, respectively.

This study learns that the most cost-effective course of action is to apply bandwidth
adjustment to peer’s joining and leaving processes, resulting in a low-complexity system
design. Assume that a peer is free to join and leave a P2P system anytime. Initially, a new peer
without contribution is not comparable to other peers in the system. With service provision,
the server must help new peers offer their upload capacities as soon as possible to accumulate
contributions. Given a set of segments that a new peer owns, the server checks with its tracker
to match and direct some client peers’ downloadings to this new peer. The tracker then
arranges a group of target client peers for a new peer. Peers in the idle state are checked before
peers in the sleep state. Other peers in the active state will be skipped, while they are presently
satisfied by other server peers. Hence, this checking order reduces the query drop rate caused
by idle peers.

Finally, consider the case of a server peer or a client peer leaving the network. In the former,
all client peers downloading segments from a leaving server peer will be asked to re-send their
requests. The hosting server then performs the necessary specific peer assignment and
bandwidth adjustment to re-arrange download requests. In the latter case, the hosting server
releases all upload bandwidth occupied by this client peer immediately upon detecting its
departure. The returned upload bandwidth can be used to upload more new segments, or
distributed to other ongoing uploading sessions.

5. Performance Evaluation

This section describes the simulation and evaluation of PAS, APAS, and APAS-E in terms of
average download time, ratio of pending requests, and amount of download segments under
different bandwidth capacity and peer contribution thresholds. This section also examines the
relative performance of the tracker-oriented D-APAS and the peer-oriented D-APAS in terms
of messaging overhead created by every request across the network group in the distributed
network environment.

5.1 Simulation Environment

The experiments in this study involve a simple simulator based on a discrete and slotted
time-based model. Table 2 lists the parameters and parameter values used in the simulations.
The simulator runs two different system models: 1) a centralized P2P model with a small-scale
peer population of n=2048, 4096, or 8192 peers, and 2) a distributed model containing
n=100000 peers evenly scattered in TG=1, 2, …, 128 network domains. Every peer arbitrarily
contains one of d=820 files as its file sharing base. Every file has the same size f=30,000 KB,
and consists of 10 file segments of equal size m=3000 KB. Every peer has uniform upload and
download capacities μi assigned by a normal distribution with μi=100 and σ=1 or a random
distribution with μi=[50, 150]. The minimal threshold of remaining upload/download
bandwidth is set as μ, that is a percent of μi.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 726

Table 2. Description of simulation parameters.
Symbol Meaning Value range

t time duration in the simulation 1000 ~ 8000
n amount of peer population in a centralized model

amount of peer population in a distributed model
2048, 4096, 8192
100000

TG amount of trackers in the tracker network 2, …128
μi a peer Pi’s upload / download bandwidth capacity Normal(100, 1) or

Random(50, 150)
μ minimal / base unit of data transfer rate (percent of μi) 10, 20,…, 100%
d amount of files in the system 820
f file size 30,000 KB
m uniform segment size 3,000 KB
α tunable parameter to adjust relative weighting between ULpast and ULnow [0, 1]
pin random prabability that a new peer joins in the system 0.002
pout random probability that a peer leaves as it has any pending request (or not) 0.002 (or 0.003)
pr random probability that a peer sends a new request 0.005 ~ 0.1
Q range of mean relative duration 30

The simulation runs in 1000, 2000, 4000, or 8000 time units, and peers are free to join and

leave the system. Particularly, new peers join at a random probability pin=0.005. A peer can
leave the system at two different probabilities: pout=0.002 when it is in
active/sleep/busy/normal state, or pout=0.003 in the leisure/idle states. For traffic generation,
this simulation considers a heavy request workload. Every peer issues a new request to access
a file at a random probability pr=0.005, 0.01, 0.05, or 0.1. Depending on file segmentation,
every peer generates 10 segment requests to perform concurrent uploadings/downloadings in a
batch. Each peer is assigned a request queue of length Q=30 to keep its pending requests. In
addition, a peer’s contribution is increased by Eq. (1), in response to its segment uploading, as
α is set in the range of 0.5±0.15.

Accordingly, this study examines the proposed PAS, APAS, APAS-E, and D-APAS in
terms of the four performance metrics below. The first two measures examine service agility
and throughput in PAS, APAS, and APAS-E under variance of μ threshold. The third measure
examines the effect of APAS on service fairness against free-riding issues. The last measure
reflects the efficiency of D-APAS by considering messaging overhead in a large-scale
distributed P2P network.
 Average download time means the average duration from the moment at which a client

peer sends a segment request until the segment is uploaded by a server peer.
 Average ratio of pending requests is the total number of pending requests in queue to the

total of segment requests that all peers have sent to the system.
 Average number of download segments by contribution range is the amount of segments

that all peers in a specific contribution range have downloaded to the total of peers in this
contribution range.

 Average number of outward messages per request indicates the average of outward
messages among trackers, caused by any request in a distributed P2P model.

5.2 Sensitivity to Average Download Time

This subsection inspects the radical intention of improving service agility and fairness. Fig. 6
and 7 illustrate the experimental results of average download time attained by PAS, APAS,
and APAS-E. Fig. 8 compares the performance of PAS and APAS when the simulation runs
over different time periods. Fig. 9-(a) presents similar results under both normal and random

727 Hu et al.: Fair Peer Assignment Scheme for Peer-to-Peer File Sharing

distributions of peer capacity μi. These figures indicate that bandwidth granularity directly
influences average download time. A larger value of μ decreases the download time; in
contrast, a smaller value of μ improves download concurrency and service agility. APAS
achieves better performance than PAS, and APAS-E achieves performance similar to that of
APAS.

An analysis of the performance results above shows that the granularity of upload/download
bandwidth allocation significantly influences system performance. The time difference
between PAS and the other two methods increases as μ decreases. Because a smaller μ means
a higher bandwidth granularity, the number of segments which a peer can upload and
download increases. In APAS with the substitute policy, the number of candidate server peers
for each segment request increases implicitly. Thus, a client peer has more chances to get an
appropriate server peer and quickly begin downloading. When μ>50%, APAS and PAS have
similar performance. In this case, the substitute policy can run in vain because it is not easy to
find a server peer with enough remaining bandwidth to serve a passed client peer.

The efforts of APAS and APAS-E are prominent in reducing download time, especially
under a heavy request workload as the factor of pr is considered. Fig. 6 shows that with μ≤
50%, n=4096 or 8192, and pr=0.1, APAS and APAS-E reduce download time by about
15~30% compared with PAS. In contrast, under a light request workload as shown in Fig. 7-(a)
with n=4096 and pr=0.005, APAS and APAS-E reduce download time by about 10~15%
compared with the control result of about 12~30% in Fig. 7-(b) with pr=0.05. This
phenomenon also appears in Fig. 8 with n=8192 and pr=0.005, where all APAS’s cases have
less than 12 % of download time by comparing Fig. 8-(b) with Fig. 8-(a).

APAS and APAS-E achieve similar performance regardless of μ since peer elimination is
not meant to reduce the average download time. High bandwidth granularity can augment the
effect of substitute policy in APAS and speed up request downloading with low blocking
probability. In other words, when every peer can process more concurrent requests, the effect
of elimination in APAS is minor relatively. On the other hand, the results above provide
information about potential variations in block granularity of file segmentation subject to
bandwidth granularity of data transfer capability, and vice versa, in a P2P file system.

Fig. 6. Sensitivity to average download time under variance of μ (as pr=0.1, t=1000 and α=0.5).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 728

Fig. 7. Sensitivity to average download time under variance of μ (as n=4096, t=1000 and α=0.5).

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50

av
e

ra
g

e
d

ow
nl

oa
d

tim
e

(ti
m

e
un

it)

μ - threshold in percent of μi

duration=1000

duration=2000

duration=4000

duration=8000

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50

av
er

ag
e

do
w

nl
o

ad
 ti

m
e

(ti
m

e
un

it)

μ - threshold in percent of μi

duration=1000

duration=2000

duration=4000

duration=8000

Fig. 8. Sensitivity to average download time under various durations (as n=8192, pr=0.005 and α=0.5).

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50

a
ve

ra
g

e
d

ow
n

lo
ad

 ti
m

e
 (t

im
e

u
ni

t)

μ - threshold in percent of μi

PAS - Normal

PAS - Random
APAS - Normal

APAS - Random

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50

a
ve

ra
g

e
ra

tio
 o

f p
e

n
d

in
g

re
q

u
e

st
s

(%
)

μ - threshold in percent of μi

PAS - Normal
PAS - Random
APAS - Normal
APAS - Random

Fig. 9. Performance sensitivities under variance of μ assigned by normal and random distributions (as

n=8192, pr=0.005, α=0.5, t=1000, and μ=Normal(100, 1) or Random(50, 150)).

729 Hu et al.: Fair Peer Assignment Scheme for Peer-to-Peer File Sharing

5.3 Sensitivity to Average Ratio of Pending Requests

This subsection examines the influence of bandwidth granularity on the system throughput in
terms of average ratio of pending requests. Fig. 9 shows that all PAS and APAS curves under
normal and random distributions of peer bandwidth capacity are very close. To avoid
redudancy, Fig. 10 only depicts the results of normal distribution.

Note that all the results of PAS, APAS and APAS-E fluctuate only slightly, and are very
similar. This is because system throughput, i.e., service capacity in a P2P system, is less
sensitive to bandwidth granularity under stable request workload. As shown in Fig. 9-(b) and
Fig. 10, although the average ratios obtained by PAS and APAS somewhat ascend as μ
increases, its ascending degree is small yet. This is because a larger μ decreases the total
number of available server peers for any segment request, but reduces the download time.
However, a smaller μ enables a peer to have more concurrent segment requests, but it takes a
longer time to transfer every segment. In addition, the increase of request workload evenly
boosts the ratios of pending requests, for example, roughly from 40→50 as pr=0.005→0.05 in
Fig. 10-(b). Hence, the system throughput exhibits no drastic variations. Compared with PAS,
applying the substitute policy and peer elimination does not affect system throughput, thereby
supporting the reliability of APAS and APAS-E.

Fig. 10. Sensitivity to average ratio of pending requests (i.e, intensity of dropping requests) under

variance of μ (as n=4096, t=1000 and α=0.5).

5.4 Sensitivity to Average Number of Download Segments

This subsection reviews various attempts to limit the free riding problem and maintain service
fairness among peers with different levels of contribution. Specifically, Eq. (1) classifies peers
into clusters based on their peer contributions. The performance results corresponding to each
cluster are determined by different measures of average download segments, number of times
by APAS-E, and request blocking ratio of APAS-E to PAS, as Fig. 11-(b), 12-(a), and 12-(b)
respectively illustrate.

Fig. 11-(a) examines the sensitivity to relative weighting between a peer’s past and current
contributions in different peer contribution ranges. Based on the foregoing investigation, in
which APAS-E attains the best service agility and throughput, Fig. 11-(a) only presents the
results of APAS-E to simplify the presentation. All the curves in this figure go up almost
linearly corresponding to incremental increases in the x-axis. Hence, simply applying Eqs. (1)
and (2) to the peer assignment process helps penalize free riders. In addition, the variety of
relative weightiness achieved by tuning α in Eq. (1) yields similar performance. Without loss

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 730

of generality, this study derives the experiment results of case α = 0.5 to examine the relative
performance of PAS, APAS, and APAS-E, as Fig. 11-(b) depicts.

(a) APAS-E: relative weighting by α (b) relative performance

Fig. 11. Sensitivity to the average number of download segments with respect to different peer
contribution ranges: (a) APAS-E to relative weighting between ULpast and ULnow (as n=8192, μ=50%,

pr=0.1, t=1000 and α=[0.35, 0.65]), and (b) relative performance among PAS, APAS, and APAS-E (as
n=8192, μ=50%, pr=0.1, t=1000 and α=0.5).

0

1

2

3

4

5

[0,10] [10,20] [20,30] [30,40] [40,50]

n
u

m
b

e
r o

f t
im

e
s

b
y

A
P

A
S

-E

peer contribution Ci

10 20 30 40 50 60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

[0,10] [10,20] [20,30] [30,40] [40,50]

re
la

tiv
e

 b
lo

ck
 ra

tio
 (A

P
A

S
-E

 /
P

A
S

)

peer contribution Ci

μ=10%
μ=20%
μ=30%
μ=40%
μ=50%

Fig. 12. Relative performance between APAS-E and PAS with respect to different peer contribution

ranges: (a) number of times - the occurrences of peer elimination made by APAS-E (as n=8192,
pr=0.005, α=0.5, t=1000 and μ=10, …, 60%), and (b) block ratio of APAS-E to PAS (as n=8192,

pr=0.005, α=0.5, t=1000 and μ=10, …, 50%).

APAS-E outperforms the other methods in service fairness and utilization. A comparative
baseline consisting of PAS with FIFO leads to a flat outcome when the difference between two
peers in respective clusters is small, or less than 10% of the total number of download
segments. Based on its tie-in substitute policy, APAS rewards frequently-contributing peers
with more download resources. For instance, the number in cluster of [35, 39] is 1.5 times that
in cluster [0, 4]. In addition to the substitute policy, the elimination method can significantly
boost the performance, increasing the difference between these two clusters about 2.4 times.
The results in Fig. 12-(a) suggest that APAS-E enforces fair peer elimination. In all cases, the
number of peers eliminated from a cluster of lower contribution is larger under different

731 Hu et al.: Fair Peer Assignment Scheme for Peer-to-Peer File Sharing

bandwidth granularities. Furthermore, Fig. 12-(b) shows the ratio of respective numbers of
blocked requests in PAS and APAS-E caused by temporary service unavailability, during
which no server peer or substitute server peer is available. APAS-E enables peers with high
contributions to experinece the reward of high service utiliztion. This effort is quite
conspicuous in the cases of high bandwidth granularity.

In summary, the previous investigations of a centralized P2P context indicate that APAS
with the substitute and elimination policies is amenable and efficientdue to its beneficial
effects on system throughput and service fairness. The remainder of this section examines its
distributed version, i.e., D-APAS, in a large-scale distributed P2P environment.

5.5 Performance Results of D-APAS

This subsection shows that D-APAS is able to maintain service utilization and fairness in a
distributed P2P environment. As Section 4.5 shows, this study simulates and compares
tracker-oriented and peer-oriented D-APASs in terms of messaging overhead across the
tracker group into the distributed network, where every tracker still performs APAS-E as usual
inside its network domain. Fig. 13 compares the performance of tracker-oriented and
peer-oriented D-APASs in a large-scale context with n=100000. Experiments were conducted
to examine the influences of different factors, including tracker group size, initial number of
segments owned by each peer, bandwidth granularity, and peer contribution.

The peer-oriented method outperforms the tracker-oriented method in terms of outward
message overhead. The experimental results in Fig. 13(a)-(c) show some observations below.

First, the tracker-oriented method induces a linear growth in message overhead as the
tracker group size increases, as Fig. 13-(a) shows. In contrast, the message overhead generated
by the peer-oriented method remains nearly constant regardless of the tracker group size. This
is because the hosting tracker in the tracker-oriented method forwards H(Sk) to all external
trackers and asks them to find an optimal substitute server peer. This process propagates a
considerable amount of messages across the tracker network. In the peer-oriented method,
however, the hosting tracker first determines a subset of potential trackers. This process avoids
a “blanket” search in the tracker network.

Second, computing a pre-determined subset of potential trackers using the peer-oriented
method is cost-effective because it efficiently reduces the overall message overhead. Although
this pre-determining process generates some computation and communication overheads,
these costs are limited within the hosting tracker’s domain. Hence, this process is superior to
the high expense of the tracker-oriented method. The additional experimental results depicted
in Fig. 13-(c) support this observation, in that the tracker-oriented method sends more outward
messages to external trackers than the peer-oriented method.

Third, bandwidth granularity directly influences the measure of message overhead. Both
peer-oriented and tracker-oriented methods produce lower message overheads under higher
granularity. For instance, the obvious differentiation between the cases of μ=10% and μ=50%
depicted in Fig. 13-(a) confirms this observation.

Fourth, the tracker-oriented method is sensitive to the variance of number of segments that
every peer begins with. The greater the initial number is, the smaller the number of messages a
request may incur. When the initial number is larger enough, the average number of outward
messages caused by every request approaches zero. In other words, the hosting tracker handles
almost every request in its local domain. Adding more initialized segments effectively
increases the probability of finding a server peer using either PAS or APAS within the domain.
On the other hand, the message overhead of the peer-oriented method remains low for the
same reason as mentioned above.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 732

0

10

20

30

40

50

60

2 4 8 16 32 64

a
ve

ra
g

e
o

f o
u

tw
a

rd
 m

e
ss

a
ge

s
/p

e
r r

e
q

u
e

st

tracker number

tracker-oriented (μ=50%)
tracker-oriented (μ=10%)
peer-oriented (μ=50%)
peer-oriented (μ=10%)

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20

a
ve

ra
g

e
o

f o
u

tw
a

rd
 m

e
ss

a
ge

s
/ p

e
r r

e
q

u
e

st

iniitial number of segments in each peer

tracker-oriented (TG=16)

tracker-oriented (TG=32)

tracker-oriented (TG=64)

tracker-oriented (TG=128)

peer-oriented (TG=16)

peer-oriented (TG=32)

peer-oriented (TG=64)

peer-oriented (TG=128)

0

50

100

150

200

0 2 4 6 8 10 12 14 16 18 20

to
ta

l o
u

tw
a

rd
 m

e
ss

ag
es

 to
 e

xt
e

rn
al

 tr
a

ck
er

s

initial number of segments in each peer

tracker-oriented (TG=128)

tracker-oriented (TG=32)

peer-oriented (TG=128)

peer-oriented (TG=32)

(a) tracker group size

(d) peer contribution

(b) message overhead / per request

(c) message overhead

0

0.1

0.2

[0,10] [10,20] [20,30] [30,40] [40,50]

b
lo

ck
in

g
 ra

te

peer contribution Ci

initial number of segments = 2
initial number of segments = 4
initial number of segments = 8
initial number of segments = 16

Fig. 13. Performance results by D-APAS (as n=100000, TG=[2, 4, …, 128], pr=0.005, α=0.5, t=1000,
and μ=[10, 30, 50%]): (a) average number of outward messages per request against tracker group size
(as only one initial segment is set), (b) average number of outward messages per request against the
initial number of segments in each peer (as μ=30%), (c) total of outward messages across the tracker
network against the number of initial segments in each peer (as μ=30% and TG=128), and (d) block

ratio in a peer cluster against the number of initial segments in a peer (as μ=30% and TG=128).

Finally, using the tracker-oriented or the peer-oriented method achieves the same result of

finding an optimal substitute server peer P*s in a large-scale distributed P2P network, though
they generate different message overheads. Both the peer-oriented and tracker-oriented
methods can augment service fairness by peer substitute and elimination. Fig. 13-(d) depicts
the measures of blocking rates among peer clusters. The blocking rate is very low when no
server peers are available (as a result of temporary unavailability due to unsuccessful peer
elimination). Again, the blocking rate can be seriously reduced when the system has segments
scattered over the distributed network.

The discussion above reviews the peer-oriented and tracker-oriented methods of performing
APAS and APAS-E in a distributed P2P network environment. Based on the relative
performance indicated in Fig. 13, the peer-oriented method is superior to the tracker-oriented
method in terms of efficiency and cost-effectiveness. Nevertheless, whereas the peer-oriented
method induces a higher computation overhead, the tracker-oriented method is preferable

733 Hu et al.: Fair Peer Assignment Scheme for Peer-to-Peer File Sharing

under some critical situations. For example, peers may be resource-constrained to reduce
computation cost, or when transmission between the tracker and its mobile or thin peers is
limited or unreliable. Therefore, though the tracker-oriented method is not economical, it is a
viable alternative under certain conditions.

6. Conclusions

This study addresses the peer churn and free riding problems appearing in P2P networks. To
mitigate these problems, this study proposes a simple and efficient peer assignment scheme to
protect against performance degradation in terms of service capacity and fairness. The
proposed design enforces prioritized admission and scheduling policy and deals with request
workload and upload/download resource allocation in a fair and efficient manner. This study
also examines several implicit issues, including download concurrency; download blocking,
and service starvation. This study designs supplementary methods, including peer substitute,
peer elimination, and bandwidth adjustment, to resolve these issues and prevent APAS
performance degradation. Experimental results confirm that APAS enhances bandwidth
utilization and achieves fair resource allocation for P2P file sharing applications.

This study extends the design of APAS to create the D-APAS, which performs well in
large-scale distributed P2P networks. This study presents and compares two variants of
peer-oriented and tracker-oriented D-APASs. Performance results show that both methods
maintain the functionalities of APAS and augment the effects of peer substitute and
elimination in distributed P2P networks. However, the peer-oriented method outperforms the
tracker-oriented method in terms of message overhead, but may induce higher computation
costs. Hence, these two methods are alternatives with different communication and
computation concerns.

Consequently, the contributions of this study are two-fold: the proposed APAS and
D-APAS can be used in centralized and distributed P2P network environments, respectively,
to ensure fair peer assignment strategies for P2P file sharing applications. Extensive
simulations confirm the efficacy, applicability, and extensibility of these approaches.

References

[1] The cooperative association for Internet data analysis (CAIDA), “Internet traffic classification,”
online available: http://www.caida.org/research/traffic-analysis/classification-overview/, 2009.

[2] Z. Ge, D. Figueiredo, S. Jaiswal, J. Kurose, and D. Towsley, “Modeling peer-peer file sharing
systems,” in Proc. of IEEE INFOCOM’03, vol. 3, pp. 2188-2198, 2003.

[3] S. Androutsellis-Theotokis and D. Spinellis, “A survey of peer-to-peer content distribution
technologies,” ACM Computing Surveys, vol. 36, no. 4, pp. 335-371, 2004.

[4] X. Yang and G. de Veciana, “Service capacity of peer to peer networks,” in Proc. of IEEE
INFOCOM’04, vol. 4, pp. 2242-2252, 2004.

[5] J. S. Kong, J. S. A. Bridgewater, and V. P. Roychowdhury, “Resilience of structured p2p systems
under churn: the reachable component method,” Computer Communications, vol. 31, no. 10, pp.
2109-2123, 2008.

[6] D. Stutzbach, and R. Rejaie, “Understanding churn in peer-to-peer networks,” in Proc. of the 6th
ACM SIGCOMM Conf. on Internet measurement, pp. 189-202, 2006.

[7] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and comparison of
peer-to-peer overlay network schemes,” IEEE Communications Tutorials and Surveys, vol. 7, no.
2, pp. 72-93, 2005.

[8] C.-L. Hu and T.-H. Kuo, “Hierarchical peer-to-peer overlay with cluster-reputation-based

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 5, October 2010 734

adaptation,” in Proc. of the 2009 IEEE Pacific Rim Conf. on Communications, Computers and
Signal Processing, 2009.

[9] F. E. Bustamante and Y. Qiao, “Designing less-structured p2p systems for the expected high
churn,” IEEE/ACM Trans. on Networking, vol. 16, no. 3, pp. 617-627, 2008.

[10] E. Adar and B. A. Huberman, “Free riding on gnutella,” First Monday, vol. 5, no. 10, 2000.
[11] S. Saroiu, P. K. Gummadi, and S. D. Gribble, “A measurement study of peer-to-peer file sharing

systems,” in Proc. of the SPIE Vol.4673: Multimedia Computing and Networking, 2002.
[12] A. Creus-Mir, R. Casadesus-Masanell, and A. Hervas-Drane, “Bandwidth allocation in

peer-to-peer file sharing networks,” Computer Communications, vol. 31, no. 2, pp. 257-265, 2008.
[13] M. Feldman and J. Chuang, “Overcoming free-riding behavior in peer-to-peer systems,” ACM

SIGecom Exchanges, vol. 5, no. 4, pp. 41-50, 2005.
[14] P. Antoniadis, C. Courcoubetis, and R. Mason, “Comparing economic incentives in peer-to-peer

networks,” Computer Networks, vol. 46, no. 1, pp. 133-146, 2004.
[15] P. Resnick, K. Kuwabara, R. Zeckhauser, and E. Friedman, “Reputation systems,”

Communications of the ACM, vol. 43, no. 12, pp. 45-48, 2000.
[16] S. Jun and M. Ahamad, “Incentives in BitTorrent induce free riding,” in Proc. of the 2005 ACM

SIGCOMM Workshop on Economics of Peer-to-Peer Systems, pp. 116-121, 2005.
[17] D. Hughes, G. Coulson, and J. Walkerdine, “Free riding on gnutella revisited: the bell tolls?” IEEE

Distributed Systems Online, vol. 6, no. 3, 2005.
[18] B. Yang and H. Garcia-Molina, “PPay: Micropayments for peer-to-peer systems,” in Proc. of the

10th ACM Conf. on Computer and Communications Security, pp. 300-310, 2003.
[19] M. J. Osborne, An introduction to game theory, Oxford University Press, 2004.
[20] K. Eger and U. Killat, “Bandwidth trading in BitTorrent-like p2p networks for content

distribution,” Computer Communications, vol. 31, no. 2, pp. 201-211, 2008.
[21] I. Osipkov, P. Wang, and Y. Kim, “Robust accounting in decentralized p2p storage systems,” in

Proc. of the 26th IEEE International Conf. on Distributed Computing Systems, pp. 300-310, 2006.
[22] I. Simplot-Ryl, I. Traore, and P. Everaere, “Distributed architectures for electronic cash schemes:

a survey,” International Journal of Parallel, Emergent and Distributed Systems, vol. 24, no. 3, pp.
243-271, 2009.

[23] E. Fourquet, K. Larson, and W. Cowan, “A reputation mechanism for layered communities,” ACM
SIGecom Exchanges, vol. 6, no. 1, pp. 11-22, 2006.

[24] B. Cohen, “Incentives build robustness in BitTorrent,” in Proc. of the 1st Workshop on Economics
of Peer-to-Peer Systems, 2003.

[25] A. Legout, G. Urvoy-Keller, and P. Michiardi, “Rarest first and choke algorithms are enough,” in
Proc. of the 6th ACM SIGCOMM Conf. on Internet measurement, pp. 203-216, 2006.

[26] D. Qiu and R. Srikant, “Modeling and performance analysis of BitTorrent-like peer-to-peer
networks,” in Proc. of ACM SIGCOMM’04, pp. 367-378, 2004.

[27] M. Li, J. Yu, and J. Wu, “Free-riding on BitTorrent-like peer-to-peer file sharing systems:
modeling analysis and improvement,” IEEE Trans. on Parallel and Distributed Systems, vol. 19,
no. 7, pp. 954-966, 2008.

[28] M. Yang, Z. Zhang, X. Li, and Y. Dai, “An empirical study of free-riding behavior in the maze p2p
file-sharing system,” in Proc. of the 4th Annual International Workshop on Peer-To-Peer Systems,
vol. 3640 of Lecture Notes in Computer Science, Springer, pp. 182-192, 2005.

[29] A. R. Bharambe, C. Herley, and V. Padmanabhan, “Analyzing and improving a BitTorrent
network’s performance mechanisms,” in Proc. of IEEE INFOCOM’06, 2006.

[30] H. Liu and C. Hsu, “Anne: a fair service capacity management for p2p overlay networks,” in Proc.
of the 2nd International Conf. on Communications and Networking in China, pp. 265-269, 2007.

[31] R. Jurca and B. Faltings, “Reputation-based pricing of p2p services,” in Proc. of the 2005 ACM
SIGCOMM Workshop on Economics of peer-to-peer systems, pp. 144-149, 2005.

[32] R. Prasad, V. Srinivas, V. Kumari, and K. Raju, “An effective calculation of reputation in p2p
networks,” Journal of Networks, vol. 4, no. 5, pp. 332-342, 2009.

[33] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and replication in unstructured
peer-to-peer networks,” in Proc. of the 16th ACM International Conf. on Supercomputing, pp.

735 Hu et al.: Fair Peer Assignment Scheme for Peer-to-Peer File Sharing

84.95, 2002.
[34] B. Yang and H. Garcia-Molina, “Improving search in peer-to-peer networks,” in Proc. of the 22nd

International Conf. on Distributed Computing Systems, pp. 5-14, 2002.
[35] M. Yanga and Z. Fei, “A novel approach to improving search efficiency in unstructured

peer-to-peer networks,” Journal of Parallel and Distributed Computing, vol. 69, no. 11, pp.
877-884, 2009.

[36] C. Gkantsidis, M. Mihail, and A. Sabei, “Hybrid search schemes for unstructured peer-to-peer
networks,” in Proc. of IEEE INFOCOM’05, vol. 3, pp. 1526-1537, 2005.

[37] X. Shi, J. Han, Y. Liu, and L. M. Ni, “Popularity adaptive search in hybrid p2p systems,” Journal
of Parallel and Distributed Computing, vol. 69, no. 2, pp. 125-124, 2009.

[38] T. Lin, P. Lin, H. Wang, and C. Chen, “Dynamic search algorithm in unstructured peer-to-peer
networks,” IEEE Trans. on Parallel and Distributed Systems, vol. 20, no. 5, pp. 654-666, 2009.

Chih-Lin Hu received the BS degree in computer science from the National Cheng-Chi University in
1997, the MS degree in computer science from the National Chung-Hsing University in 1999, and the PhD
degree in electrical engineering from the National Taiwan University in 2003. He was a researcher at BenQ
and Qisda Advanced Technology Centers, Taipei City, Taiwan, from 2003 to 2007. Since 2008, he has
been an assistant professor in the Department of Communication Engineering, National Central
University, Taoyuan, Taiwan, R.O.C. He had the honor to get the best paper award in IEEE ICPADS 2000
and BenQ Innovation Awards in 2006 and 2007. He had co-organized MDM’09 Workshop on Mobile
Peer-to-Peer Information Services (MP2PIS) and IEEE PerCom’10 Workshop on Mobile Peer-to-Peer
Computing (MP2P). His research interests include mobile and pervasive computing systems, broadcast
information system, digital home network, and Internet technology. Dr. Hu is a member of the ACM and
the IEEE.

Da-You Chen received the BS degree in communication engineering from the National Central
University, Taiwan, in 2010. He is currently pursuing the MS degree at the same faculty. His research
interests include peer-to-peer system, delay tolerant network, and Internet technology.

Yi-Hsun Chang received the BS degree in electrical engineering from National Chi-Nan University,
Taiwan, in 2008, and the MS degree in communication engineering from National Central University,
Taiwan, in 2010. Her research interests include P2P networking and computing technologies. She is an
IEEE student member.

Yu-Wen Chen was born in Taiwan, in 1988. She received the BS degree in communication engineering
from the National Central University (NCU), Taiwan, in 2010. She is currently pursuing the MS degree at
Columbia University, NY, USA. She had the honor to get the 2009 NCU Best Student Award. Her
research interests include mobile and wireless communication systems, mobile computing, and Internet
technology. She is an IEEE student member.

