INTUITIONISTIC FUZZY θ -CLOSURE AND θ -INTERIOR

SEOK JONG LEE AND YOUN SUK EOUM

ABSTRACT. The concept of intuitionistic fuzzy θ -interior operator is introduced and discussed in intuitionistic fuzzy topological spaces. As applications of this concept, intuitionistic fuzzy strongly θ -continuous, intuitionistic fuzzy θ -continuous, and intuitionistic fuzzy weakly continuous functions are characterized in terms of intuitionistic fuzzy θ -interior operator.

1. Introduction

As a generalization of fuzzy sets, the concept of intuitionistic fuzzy set was introduced by Atanassov [1]. Recently, Çoker and his colleagues [2, 3, 4] introduced intuitionistic fuzzy topological space using intuitionistic fuzzy sets. Mukherjee introduced the concepts of fuzzy θ -closure operator in [9] and the notions of fuzzy θ -continuous and fuzzy weakly continuous functions in [8]. Hanafy et al. introduced and investigated intuitionistic fuzzy θ -closure operator, intuitionistic fuzzy strongly θ -continuous, intuitionistic fuzzy θ -continuous and intuitionistic fuzzy weakly continuous functions in [6]. In this paper, we define intuitionistic fuzzy θ -interior operator and study the properties of intuitionistic fuzzy θ -interior operator in intuitionistic fuzzy topological spaces. As applications of this concept, intuitionistic fuzzy strongly θ -continuous, intuitionistic fuzzy θ -continuous, and intuitionistic fuzzy weakly continuous functions are characterized in terms of intuitionistic fuzzy θ -interior operator.

2. Preliminaries

Let X be a nonempty set and I the unit interval [0,1]. An *intuitionistic* fuzzy set (IFS for short) A is an object having the form

$$A = \{ \langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X \},\$$

where the functions $\mu_A : X \to I$ and $\gamma_A : X \to I$ denote the degree of membership and the degree of nonmembership, respectively, and $\mu_A + \gamma_A \leq 1$.

O2010 The Korean Mathematical Society

Received June 24, 2009.

²⁰⁰⁰ Mathematics Subject Classification. 54A40.

Key words and phrases. intuitionistic fuzzy θ -interior, intuitionistic fuzzy strongly θ -continuous, intuitionistic fuzzy θ -continuous, intuitionistic fuzzy weakly continuous.

Sometimes we denote $A = (\mu_A, \gamma_A)$ for simplicity. Let I(X) denote the set of all intuitionistic fuzzy sets in X.

Obviously, every fuzzy set μ_A in X is an intuitionistic fuzzy set of the form $\{\langle x, \mu_A(x), 1 - \mu_A(x) \rangle : x \in X\}.$

Definition 2.1 ([1]). Let X be a nonempty set and the IFSs A and B be of the form $A = \{\langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X\}, B = \{\langle x, \mu_B(x), \gamma_B(x) \rangle : x \in X\}.$ Then

- (1) $A \leq B$ if and only if $\mu_A(x) \leq \mu_B(x)$ and $\gamma_A(x) \geq \gamma_B(x)$ for all $x \in X$,
- (2) A = B if and only if $A \leq B$ and $B \leq A$,
- (3) $A^c = \{ \langle x, \gamma_A(x), \mu_A(x) \rangle : x \in X \},$
- (4) $A \cap B = \{ \langle x, \mu_A \land \mu_B(x), \gamma_A \lor \gamma_B(x) \rangle : x \in X \},$
- (5) $A \cup B = \{\langle x, \mu_A \lor \mu_B(x), \gamma_A \land \gamma_B(x) \rangle : x \in X\},$
- (6) $0_{\sim} = \{\langle x, \tilde{0}, \tilde{1} \rangle : x \in X\}$ and $1_{\sim} = \{\langle x, \tilde{1}, \tilde{0} \rangle : x \in X\}.$

Definition 2.2 ([2]). Let X and Y be two nonempty sets, and let $f: X \to Y$ be a function.

(1) If $B = \{\langle y, \mu_B(y), \gamma_B(y) \rangle : y \in Y\}$ is an IFS in Y, then the preimage of B under f, denoted by $f^{-1}(B)$, is the IFS in X defined by

$$f^{-1}(B) = \{ \langle x, f^{-1}(\mu_B)(x), f^{-1}(\gamma_B)(x) \rangle : x \in X \}.$$

(2) If $A = \{ \langle x, \lambda_A(x), \delta_A(x) \rangle : x \in X \}$ is an IFS in X, then the image of A under f, denoted by f(A), is the IFS in Y defined by

$$f(A) = \{ \langle y, f(\lambda_A)(y), (1 - f(1 - \delta_A))(y) \rangle : y \in Y \},\$$

where

$$f(\lambda_A)(y) = \begin{cases} \sup_{x \in f^{-1}(y)} \lambda_A(x) & \text{if } f^{-1}(y) \neq \phi \\ 0 & \text{otherwise,} \end{cases}$$
$$(1 - f(1 - \delta_A))(y) = \begin{cases} \inf_{x \in f^{-1}(y)} \lambda_A(x) & \text{if } f^{-1}(y) \neq \phi \\ 1 & \text{otherwise.} \end{cases}$$

Theorem 2.3 ([2]). Let A and A_j $(j \in J)$ be IFSs in X, B and B_j $(j \in K)$ IFSs in Y. Let $f: X \to Y$ be a function. Then

(1) $A_1 \leq A_2 \Rightarrow f(A_1) \leq f(A_2),$ (2) $B_1 \leq B_2 \Rightarrow f^{-1}(B_1) \leq f^{-1}(B_2),$ (3) $A \leq f^{-1}(f(A))$ (If f is injective, then $A = f^{-1}(f(A)),$ (4) $f(f^{-1}(B)) \leq B$ (If f is surjective, then $B = f(f^{-1}(B)),$ (5) $f^{-1}(\bigcup B_j) = \bigcup f^{-1}(B_j),$ (6) $f^{-1}(\bigcap B_j) = \bigcap f^{-1}(B_j),$ (7) $f(\bigcup A_j) = \bigcup f(A_j),$ (8) $f(\bigcap A_j) \leq \bigcap f(A_j),$ (If f is injective, then $f(\bigcap A_j) = \bigcap f(A_j)),$ (9) $f^{-1}(\tilde{1}) = \tilde{1}, if f$ is surjective, (10) $f(\tilde{0}) = \tilde{0},$ (11) $f(A)^c \leq f(A^c), if f$ is surjective,

(12) $f^{-1}(B^c) = f^{-1}(B)^c$.

Definition 2.4 ([2]). An *intuitionistic fuzzy topology* (IFT for short) on a nonempty set X is a family \mathcal{T} of IFSs in X which satisfies the following axioms:

- (1) $0_{\sim}, 1_{\sim} \in \mathcal{T}.$
- (2) $G_1 \cap G_2 \in \mathcal{T}$ for any $G_1, G_2 \in \mathcal{T}$.
- (3) $\bigcup G_i \in \mathcal{T}$ for any arbitrary $\{G_i : i \in J\} \leq \mathcal{T}$.

In this case the pair (X, \mathcal{T}) is called an *intuitionistic fuzzy topological space* (IFTS for short) and any IFS in \mathcal{T} is known as an *intuitionistic fuzzy open set* (IFOS for short) in X.

Definition 2.5 ([2]). Let (X, \mathcal{T}) be an IFTS and $A = \langle x, \mu_A, \lambda_A \rangle$ an IFS in X. Then the *intuitionistic fuzzy interior of* A and the *intuitionistic fuzzy closure* of A are defined by

$$cl(A) = \bigcap \{ K \mid A \le K, K^c \in \mathcal{T} \}$$

and

$$int(A) = \bigcup \{ G \mid G \le A, G \in \mathcal{T} \}.$$

Theorem 2.6 ([2]). For any IFS A in (X, \mathcal{T}) , we have

$$\operatorname{cl}(A^c) = (\operatorname{int}(A))^c$$
 and $\operatorname{int}(A^c) = (\operatorname{cl}(A))^c$.

Definition 2.7 ([3, 4]). Let $\alpha, \beta \in [0, 1]$ and $\alpha + \beta \leq 1$. An *intuitionistic fuzzy* point (IFP for short) $x_{(\alpha,\beta)}$ of X is an IFS in X defined by

$$x_{(\alpha,\beta)}(y) = \begin{cases} (\alpha,\beta) & \text{if } y = x, \\ (0,1) & \text{if } y \neq x. \end{cases}$$

In this case, x is called the support of $x_{(\alpha,\beta)}$, α the value of $x_{(\alpha,\beta)}$ and β the nonvalue of $x_{(\alpha,\beta)}$. An IFP $x_{(\alpha,\beta)}$ is said to belong to an IFS $A = (\mu_A, \gamma_A)$ in X, denoted by $x_{(\alpha,\beta)} \in A$, if $\alpha \leq \mu_A(x)$ and $\beta \geq \gamma_A(x)$.

Remark 2.8. If we consider an IFP $x_{(\alpha,\beta)}$ as an IFS, then we have the relation $x_{(\alpha,\beta)} \in A$ if and only if $x_{(\alpha,\beta)} \leq A$.

Definition 2.9 ([3, 4]). Let $x_{(\alpha,\beta)}$ be an IFP in X and $U = (\mu_U, \gamma_U)$ an IFS in X. Suppose further that α and β are real numbers between 0 and 1. The IFP $x_{(\alpha,\beta)}$ is said to be *properly contained* in U if and only if $\alpha < \mu_U(x)$ and $\beta > \gamma_U(x)$.

Definition 2.10 ([4]). (1) An IFP $x_{(\alpha,\beta)}$ is said to be *quasi-coincident* with the IFS $U = \langle x, \mu_U, \gamma_U \rangle$, denoted by $x_{(\alpha,\beta)}qU$, if and only if $\alpha > \gamma_U(x)$ or $\beta < \mu_U(x)$.

(2) Let $U = (\mu_U, \gamma_U)$ and $V = (\mu_V, \gamma_V)$ be two IFSs in X. Then U and V are said to be *quasi-coincident*, denoted by UqV, if and only if there exists an element $x \in X$ such that $\mu_U(x) > \gamma_V(x)$ or $\gamma_U(x) < \mu_V(x)$.

The word 'not quasi-coincident' will be abbreviated as $\widetilde{q}.$

Proposition 2.11 ([4]). Let U, V be IFSs and $x_{(\alpha,\beta)}$ an IFP in X. Then

- (1) $U\tilde{q}V^c \iff U \le V$, (2) $UqV \iff U \not\leq V^c$,
- $\begin{array}{l} (3) \quad x_{(\alpha,\beta)} \leq U \iff x_{(\alpha,\beta)} \widetilde{q} U^c, \\ (4) \quad x_{(\alpha,\beta)} q U \iff x_{(\alpha,\beta)} \nleq U^c. \end{array}$

Definition 2.12 ([4]). Let (X, \mathcal{T}) be an IFTS and $x_{(\alpha,\beta)}$ an IFP in X. An IFS A is called a *neighborhood* (q-neighborhood, respectively) of $x_{(\alpha,\beta)}$, if there exists an IFOS U in X such that $x_{(\alpha,\beta)} \in U \leq A$ $(x_{(\alpha,\beta)}qU \leq A$, respectively). The family of all neighborhoods (q-neighborhoods, respectively) of $x_{(\alpha,\beta)}$ will be denoted by $N(x_{(\alpha,\beta)})(N^q(x_{(\alpha,\beta)}))$, respectively).

3. Intuitionistic fuzzy θ -closure and θ -interior

In this section, we study some properties of intuitionistic fuzzy θ -interior.

Definition 3.1 ([6]). An IFP $x_{(\alpha,\beta)}$ is said to be *intuitionistic fuzzy* θ -cluster point of an IFS U if and only if cl(A)qU for each q-neighborhood A of $x_{(\alpha,\beta)}$. The set of all intuitionistic fuzzy θ -cluster points of U is called the *intuitionistic* fuzzy θ -closure of U and denoted by $cl_{\theta}(U)$. An IFS U will be called *intuitionis*tic fuzzy θ -closed (IF θ CS for short) if and only if $U = cl_{\theta}(U)$. The complement of an IF θ CS is called an intuitionistic fuzzy θ -open set (IF θ OS for short).

Remark 3.2. Usually, the complement of a fuzzy set A is defined by 1 - A, but the complement of an intuitionistic fuzzy set $A = \langle x, \mu_A, \gamma_A \rangle$ is defined by $A^c = \langle x, \gamma_A, \mu_A \rangle$. So

$$1 - A = \langle x, 1 - \mu_A, 1 - \gamma_A \rangle \neq \langle x, \gamma_A, \mu_A \rangle = A^c.$$

Moreover, although A is an intuitionistic fuzzy set, the set 1 - A is not necessarily an IFS. In [6], Hanafy defined the intuitionistic fuzzy θ -interior of U by

$$\operatorname{int}_{\theta}(U) = 1 - \operatorname{cl}_{\theta}(1 - U).$$

This definition could be misunderstood because of the expression 1-U. So we rephrase the definition of intuitionistic fuzzy $\theta\text{-interior}$ as follows.

Definition 3.3. Let (X, \mathcal{T}) be an IFTS and U an IFS in X. The *intuitionistic* fuzzy θ -interior of U is denoted and defined by

$$\operatorname{int}_{\theta}(U) = (\operatorname{cl}_{\theta}(U^c))^c.$$

From the above definition, we have the following relations:

- (1) $\operatorname{cl}_{\theta}(U^c) = (\operatorname{int}_{\theta}(U))^c$,
- (2) $(\operatorname{cl}_{\theta}(U))^c = \operatorname{int}_{\theta}(U^c).$

Lemma 3.4. Let U, V and A be IFSs in an IFTS (X, \mathcal{T}) . If $Aq(U \cup V)$, then AqU or AqV.

Proof. Suppose that $A\tilde{q}U$ and $A\tilde{q}V$. Then $A \leq U^c$ and $A \leq V^c$. Thus $A \leq \Box$ $U^c \cap V^c = (U \cup V)^c$. Hence $A\widetilde{q}(U \cup V)$.

Theorem 3.5. Let U and V be two IFSs in an IFTS (X, \mathcal{T}) . Then we have the following:

(1) $cl_{\theta}(0_{\sim}) = 0_{\sim},$

(2) $U \leq \operatorname{cl}_{\theta}(U),$

(3) $U \leq V \Rightarrow \operatorname{cl}_{\theta}(U) \leq \operatorname{cl}_{\theta}(V),$

- (4) $\operatorname{cl}_{\theta}(U) \cup \operatorname{cl}_{\theta}(V) = \operatorname{cl}_{\theta}(U \cup V),$
- (5) $\operatorname{cl}_{\theta}(U \cap V) \leq \operatorname{cl}_{\theta}(U) \cap \operatorname{cl}_{\theta}(V).$

Proof. (1) Obvious.

(2) Suppose that there is an IFP $x_{(\alpha,\beta)}$ in X such that $x_{(\alpha,\beta)} \notin cl_{\theta}(U)$ and $x_{(\alpha,\beta)} \in U$. Then there is a q-neighborhood A of $x_{(\alpha,\beta)}$ such that $cl(A)\tilde{q}U$. Thus $A \leq U^c$. Since A is a q-neighborhood of $x_{(\alpha,\beta)}$, there is an IFOS V such that $x_{(\alpha,\beta)}qV \leq A$. Since $A \leq U^c$, we have $x_{(\alpha,\beta)}qU^c$, and hence $x_{(\alpha,\beta)} \notin U$. On the other hand we have $x_{(\alpha,\beta)} \leq U$, because $x_{(\alpha,\beta)} \in U$. It is a contradiction.

(3) Let $x_{(\alpha,\beta)}$ be an IFP in X such that $x_{(\alpha,\beta)} \notin \operatorname{cl}_{\theta}(V)$. Then there is a q-neighborhood A of $x_{(\alpha,\beta)}$ such that $\operatorname{cl}(A)\tilde{q}V$. Since $U \leq V$, we have $\operatorname{cl}(A)\tilde{q}U$. Therefore $x_{(\alpha,\beta)} \notin \operatorname{cl}_{\theta}(U)$.

(4) Since $U \leq U \cup V$, $cl_{\theta}(U) \leq cl_{\theta}(U \cup V)$. Similarly, $cl_{\theta}(V) \leq cl_{\theta}(U \cup V)$. Hence $cl_{\theta}(U) \cup cl_{\theta}(V) \leq cl_{\theta}(U \cup V)$. On the other hand, take any $x_{(\alpha,\beta)} \in cl_{\theta}(U \cup V)$. Then for any *q*-neighborhood *A* of $x_{(\alpha,\beta)}$, $cl(A)q(U \cup V)$. By Lemma 3.4, cl(A)qU or cl(A)qV. Therefore $x_{(\alpha,\beta)} \in cl_{\theta}(U)$ or $x_{(\alpha,\beta)} \in cl_{\theta}(V)$. Hence $cl_{\theta}(U \cup V) \leq cl_{\theta}(U) \cup cl_{\theta}(V)$.

(5) Since $U \cap V \leq U$, $\operatorname{cl}_{\theta}(U \cap V) \leq \operatorname{cl}_{\theta}(U)$. Similarly, $\operatorname{cl}_{\theta}(U \cap V) \leq \operatorname{cl}_{\theta}(V)$. Therefore $\operatorname{cl}_{\theta}(U \cap V) \leq \operatorname{cl}_{\theta}(U) \cap \operatorname{cl}_{\theta}(V)$.

Remark 3.6. For an IFS A in an IFTS (X, \mathcal{T}) , intuitionistic fuzzy θ -closure $\mathrm{cl}_{\theta}(A)$ is not necessarily an IF θ CS, and hence $\mathrm{cl}_{\theta}(\mathrm{cl}_{\theta}(A)) \neq \mathrm{cl}_{\theta}(A)$, which is shown in the following example. Thus cl_{θ} operator does not satisfies the Kuratowski closure axioms.

Example 3.7. Let $X = \{a, b, c\}$ and $U = \langle (\frac{a}{0.5}, \frac{b}{0.6}, \frac{c}{0.2}), (\frac{a}{0.4}, \frac{b}{0.3}, \frac{c}{0.4}) \rangle, V = \langle (\frac{a}{0.4}, \frac{b}{0.5}, \frac{c}{0.1}), (\frac{a}{0.6}, \frac{b}{0.5}, \frac{c}{0.4}) \rangle$. Then the family $\mathcal{T} = \{\underline{0}, \underline{1}, U, V\}$ of IFSs of X is an IFT on X. Let $A = \langle (\frac{a}{0.3}, \frac{b}{0.3}, \frac{c}{0.0}), (\frac{a}{0.7}, \frac{b}{0.5}, \frac{c}{0.4}) \rangle$ be an IFS in X. Then $a_{(0.8,0.1)} \notin \operatorname{cl}_{\theta}(A)$ and $a_{(0.6,0.4)} \in \operatorname{cl}_{\theta}(A)$. But $a_{(0.8,0.1)} \in \operatorname{cl}_{\theta}(a_{(0.6,0.4)}) \leq \operatorname{cl}_{\theta}(A)$.

Remark 3.8 ([6]). For any IFS U in IFTS (X, \mathcal{T}) , $cl(U) \leq cl_{\theta}(U)$. Moreover $cl(U) = cl_{\theta}(U)$ for an IFOS. Thus for any IFS U in IFTS (X, \mathcal{T}) ,

$$cl_{\theta}(U) = \bigcap \{ cl_{\theta}(A) \mid A \in \mathcal{T}, U \leq A \}$$
$$= \bigcap \{ cl(A) \mid A \in \mathcal{T}, U \leq A \}.$$

So, in an intuitionistic fuzzy regular space (X, \mathcal{T}) , every IFCS is an IF θ CS and hence for any IFS U in X, $cl_{\theta}(U)$ is an IF θ CS.

Clearly, U is an IF θ OS if and only if $\operatorname{int}_{\theta}(U) = U$. Also we have following properties for the interior operator.

Theorem 3.9. Let U and V be two IFSs in an IFTS (X, \mathcal{T}) . Then we have the following:

- (1) $\operatorname{int}_{\theta}(1_{\sim}) = 1_{\sim},$
- (2) $\operatorname{int}_{\theta}(U) \leq U$,
- (3) $U \leq V \Rightarrow \operatorname{int}_{\theta}(U) \leq \operatorname{int}_{\theta}(V),$
- (4) $\operatorname{int}_{\theta}(U \cap V) = \operatorname{int}_{\theta}(U) \cap \operatorname{int}_{\theta}(V),$
- (5) $\operatorname{int}_{\theta}(U) \cup \operatorname{int}_{\theta}(V) \leq \operatorname{int}_{\theta}(U \cup V).$

Proof. (1) Obvious.

(2) Let $x_{(\alpha,\beta)} \in \operatorname{int}_{\theta}(U)$. From the fact that $\operatorname{int}_{\theta}(U) = (\operatorname{cl}_{\theta}(U^{c}))^{c} = \langle x, \gamma_{\operatorname{cl}_{\theta}(U^{c})}, \mu_{\operatorname{cl}_{\theta}(U^{c})} \rangle$, we have $\alpha \leq \gamma_{\operatorname{cl}_{\theta}(U^{c})}(x)$ and $\beta \geq \mu_{\operatorname{cl}_{\theta}(U^{c})}(x)$. Since $U^{c} \leq \operatorname{cl}_{\theta}(U^{c})$, we have $\mu_{U^{c}} \leq \mu_{\operatorname{cl}_{\theta}(U^{c})}$ and $\gamma_{U^{c}} \geq \gamma_{\operatorname{cl}_{\theta}(U^{c})}$. Thus $\alpha \leq \gamma_{U^{c}}(x) = \mu_{U}(x)$ and $\beta \geq \mu_{U^{c}}(x) = \gamma_{U}(x)$. Hence $x_{(\alpha,\beta)} \in U$.

(3) Let $U \leq V$. Then $U^c \geq V^c$. By Theorem 3.5, $\operatorname{cl}_{\theta}(U^c) \geq \operatorname{cl}_{\theta}(V^c)$. Thus $(\operatorname{cl}_{\theta}(U^c))^c \leq (\operatorname{cl}_{\theta}(V^c))^c$. Hence $\operatorname{int}_{\theta}(U) = (\operatorname{cl}_{\theta}(U^c))^c \leq (\operatorname{cl}_{\theta}(V^c))^c = \operatorname{int}_{\theta}(V)$.

(4) $\operatorname{int}_{\theta}(U \cap V) = (\operatorname{cl}_{\theta}((U \cap V)^c))^c = (\operatorname{cl}_{\theta}(U^c \cup V^c))^c = (\operatorname{cl}_{\theta}(U^c) \cup \operatorname{cl}_{\theta}(V^c))^c = (\operatorname{cl}_{\theta}(U^c))^c \cap (\operatorname{cl}_{\theta}(V^c))^c = \operatorname{int}_{\theta}(U) \cap \operatorname{int}_{\theta}(V).$

(5) Since $U \leq U \cup V$, we have $\operatorname{int}_{\theta}(U) \leq \operatorname{int}_{\theta}(U \cup V)$. Since $V \leq U \cup V$, we have $\operatorname{int}_{\theta}(V) \leq \operatorname{int}_{\theta}(U \cup V)$. Therefore $\operatorname{int}_{\theta}(U) \cup \operatorname{int}_{\theta}(V) \leq \operatorname{int}_{\theta}(U \cup V)$. \Box

Corollary 3.10. For an IFS U, $\operatorname{int}_{\theta}(U) \leq \operatorname{int}(U)$.

Proof. Let U be an IFS. Then U^c is an IFS. Thus $\operatorname{cl}(U^c) \leq \operatorname{cl}_{\theta}(U^c)$ by [6, Theorem 3.3 (ii)]. Hence $\operatorname{int}_{\theta}(U) = (\operatorname{cl}_{\theta}(U^c))^c \leq (\operatorname{cl}(U^c))^c = \operatorname{int}(U)$.

Theorem 3.11. If U is an IFCS in an IFTS (X, \mathcal{T}) , then $\operatorname{int}_{\theta}(U) = \operatorname{int}(U)$.

Proof. Let U be an IFCS. Then U^c is an IFOS. Thus $cl(U^c) = cl_{\theta}(U^c)$ by [6, Theorem 3.6]. Hence $int_{\theta}(U) = (cl_{\theta}(U^c))^c = (cl(U^c))^c = int(U)$.

Theorem 3.12. Let U be an IFS in an IFTS (X, \mathcal{T}) . Then

$$\operatorname{int}_{\theta}(U) = \bigvee \{ \operatorname{int}_{\theta}(A) \mid A^{c} \in \mathcal{T}, A \leq U \}$$
$$= \bigvee \{ \operatorname{int}(A) \mid A^{c} \in \mathcal{T}, A \leq U \}.$$

Proof. Using [6, Theorem 3.15], we have

$$\begin{aligned} \operatorname{int}_{\theta}(U) &= (\operatorname{cl}_{\theta}(U^c))^c = (\bigwedge \{ \operatorname{cl}_{\theta}(B) \mid B \in \mathcal{T}, U^c \leq B \})^c \\ &= \bigvee \{ (\operatorname{cl}_{\theta}(B))^c \mid B \in \mathcal{T}, U^c \leq B \} \\ &= \bigvee \{ \operatorname{int}_{\theta}(B^c) \mid B \in \mathcal{T}, U^c \leq B \}. \end{aligned}$$

Let $A = B^c$. Then

$$\operatorname{int}_{\theta}(U) = \bigvee \{ \operatorname{int}_{\theta}(A) \mid A^c \in \mathcal{T}, A \leq U \}.$$

The second equality holds from Theorem 3.11.

Corollary 3.13. For an IFS U in an IFTS (X, \mathcal{T}) , $int_{\theta}(U)$ is an IFOS.

Remark 3.14. For an IFS U in an IFTS (X, \mathcal{T}) , $\operatorname{int}_{\theta}(U)$ is not necessarily IF θ OS.

4. Characterizations for some types of functions

Hanafy et al. already characterized some types of functions by intuitionistic fuzzy θ -closure. Here, we will characterize an intuitionistic fuzzy strongly θ -continuous, intuitionistic fuzzy θ -continuous, and intuitionistic fuzzy weakly continuous functions in terms of intuitionistic fuzzy θ -interior.

Lemma 4.1. Let $f : (X, \mathcal{T}) \to (Y, \mathcal{T}')$ be a function and U, V be an IFSs. If UqV, then f(U)qf(V).

Proof. Suppose that $f(U)\tilde{q}f(V)$. Then $f(U) \leq (f(V))^c$. Since $U \leq f^{-1}(f(U))$, we have $U \leq f^{-1}(f(U)) \leq f^{-1}((f(V))^c)$. Thus we have $U\tilde{q}(f^{-1}((f(V))^c))^c = f^{-1}(((f(V))^c)^c) = f^{-1}(f(V))$. Since $V \leq f^{-1}(f(V))$ and $U\tilde{q}f^{-1}(f(V))$, we have $U\tilde{q}V$.

Recall that a function $f : (X, \mathcal{T}) \to (Y, \mathcal{T}')$ is said to be *intuitionistic* fuzzy strongly θ -continuous if and only if for each IFP $x_{(\alpha,\beta)}$ in X and $V \in N^q(f(x_{(\alpha,\beta)}))$, there exists $U \in N^q(x_{(\alpha,\beta)})$ such that $f(\operatorname{cl}(U)) \leq V$ (See [6]).

Theorem 4.2. Let $f : (X, \mathcal{T}) \to (Y, \mathcal{T}')$ be a function. Then the following statements are equivalent:

- (1) f is an intuitionistic fuzzy strongly θ -continuous function.
- (2) $f(cl_{\theta}(U)) \leq cl(f(U))$ for each IFS U in X.
- (3) $\operatorname{cl}_{\theta}(f^{-1}(V)) \leq f^{-1}(\operatorname{cl}(V))$ for each IFS V in Y.
- (4) $f^{-1}(V)$ is an IF θ CS in X for each IFCS V in Y.
- (5) $f^{-1}(V)$ is an IF θ OS in X for each IFOS V in Y.
- (6) $f^{-1}(\operatorname{int}(V)) \leq \operatorname{int}_{\theta}(f^{-1}(V))$ for each IFS V of Y.

Proof. $(1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4) \Leftrightarrow (5)$. See [6].

 $(3) \Rightarrow (6)$. Let V be an IFS in Y. Then V^c is an IFS in Y. Since f is an intuitionistic fuzzy strongly θ -continuous function, by the hypothesis, $cl_{\theta}(f^{-1}(V^c)) \leq f^{-1}(cl(V^c))$. Thus

$$f^{-1}(\operatorname{int}(V)) = f^{-1}((\operatorname{cl}(V^c))^c) = (f^{-1}(\operatorname{cl}(V^c)))^c$$

$$\leq (\operatorname{cl}_{\theta}(f^{-1}(V^c)))^c = (\operatorname{cl}_{\theta}((f^{-1}(V))^c))^c = \operatorname{int}_{\theta}(f^{-1}(V)).$$

 $(6) \Rightarrow (3)$. Let V be an IFS in Y. Then V^c is an IFS in Y. By the hypothesis, $f^{-1}(\operatorname{int}(V^c)) \leq \operatorname{int}_{\theta}(f^{-1}(V^c))$. Thus

$$cl_{\theta}(f^{-1}(V)) = (int_{\theta}((f^{-1}(V))^{c}))^{c} = (int_{\theta}(f^{-1}(V^{c})))^{c}$$
$$\leq (f^{-1}(int(V^{c})))^{c} = f^{-1}((int(V^{c}))^{c}) = f^{-1}(cl(V)). \qquad \Box$$

Theorem 4.3. Let $f : (X, \mathcal{T}) \to (Y, \mathcal{T}')$ be a bijection. Then the following statements are equivalent:

(1) f is an intuitionistic fuzzy strongly θ -continuous function.

- (2) $f^{-1}(\operatorname{int}(V)) \leq \operatorname{int}_{\theta}(f^{-1}(V))$ for each IFS V of Y.
- (3) $\operatorname{int}(f(U)) \leq f(\operatorname{int}_{\theta}(U))$ for each IFS U in X.

Proof. By Theorem 4.2, it suffices to show that (2) is equivalent to (3).

 $(2) \Rightarrow (3)$. Let U be an IFS in X. Then f(U) is an IFS in Y. By the hypothesis, $f^{-1}(\operatorname{int}(f(U))) \leq \operatorname{int}_{\theta}(f^{-1}(f(U)))$. Since f is one-to-one,

$$f^{-1}(\operatorname{int}(f(U))) \le \operatorname{int}_{\theta}(f^{-1}(f(U))) = \operatorname{int}_{\theta}(U).$$

Since f is onto,

$$\operatorname{int}(f(U)) = f(f^{-1}(\operatorname{int}(f(U)))) \le f(\operatorname{int}_{\theta}(U)).$$

 $(3) \Rightarrow (2)$. Let V be an IFS in Y. Then $f^{-1}(V)$ is an IFS in X. By the hypothesis, $\operatorname{int}(f(f^{-1}(V))) \leq f(\operatorname{int}_{\theta}(f^{-1}(V)))$. Since f is onto,

$$\operatorname{int}(V) \le f(\operatorname{int}_{\theta}(f^{-1}(V)))$$

Since f is one-to-one,

$$f^{-1}(int(V)) \le f^{-1}(f(int_{\theta}(f^{-1}(V)))) = int_{\theta}(f^{-1}(V)).$$

Recall that function $f: (X, \mathcal{T}) \to (Y, \mathcal{T}')$ is said to be an *intuitionistic fuzzy* θ -continuous if and only if for each IFP $x_{(\alpha,\beta)}$ in X and $V \in N^q(f(x_{(\alpha,\beta)}))$, there exists $U \in N^q(x_{(\alpha,\beta)})$ such that $f(cl(U)) \leq cl(V)$ (See [6]).

Theorem 4.4 ([6]). Let $f: (X, \mathcal{T}) \to (Y, \mathcal{T}')$ be a function. Then the following statements are equivalent:

- (1) f is an intuitionistic fuzzy θ -continuous function.
- (2) $f(cl_{\theta}(U)) \leq cl_{\theta}(f(U))$ for each IFS U in X.
- (3) $\operatorname{cl}_{\theta}(f^{-1}(V)) \leq f^{-1}(\operatorname{cl}_{\theta}(V))$ for each IFS V in Y. (4) $\operatorname{cl}_{\theta}(f^{-1}(V)) \leq f^{-1}(\operatorname{cl}(V))$ for each IFOS V in Y.
- (5) $f^{-1}(\operatorname{int}_{\theta}(V)) \leq \operatorname{int}_{\theta}(f^{-1}(V))$ for each IFS V of Y.

Proof. (1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4). See [6].

 $(3) \Rightarrow (5)$. Let V be an IFS in Y. Then V^c is an IFS in Y. Since f is an intuitionistic fuzzy θ -continuous function, by the hypothesis, $cl_{\theta}(f^{-1}(V^c)) \leq$ $f^{-1}(\mathrm{cl}_{\theta}(V^c))$. Thus

$$f^{-1}(\operatorname{int}_{\theta}(V)) = f^{-1}((\operatorname{cl}_{\theta}(V^{c}))^{c}) = (f^{-1}(\operatorname{cl}_{\theta}((V^{c}))))^{c}$$

$$\leq (\operatorname{cl}_{\theta}(f^{-1}(V^{c})))^{c} = (\operatorname{cl}_{\theta}((f^{-1}(V))^{c}))^{c} = \operatorname{int}_{\theta}(f^{-1}(V)).$$

 $(5) \Rightarrow (3)$. Let V be an IFS in Y. Then V^c is an IFS in Y. By the hypothesis, $f^{-1}(\operatorname{int}_{\theta}(V^c)) \leq \operatorname{int}_{\theta}(f^{-1}(V^c))$. Thus

$$cl_{\theta}(f^{-1}(V)) = (int_{\theta}((f^{-1}(V))^{c}))^{c} = (int_{\theta}(f^{-1}(V^{c})))^{c}$$
$$\leq (f^{-1}(int_{\theta}(V^{c})))^{c} = f^{-1}((int_{\theta}(V^{c}))^{c}) = f^{-1}(cl_{\theta}(V)). \quad \Box$$

Theorem 4.5. Let $f: (X, \mathcal{T}) \to (Y, \mathcal{T}')$ be a bijection. Then the following statements are equivalent:

(1) f is an intuitionistic fuzzy θ -continuous function.

(2)
$$f^{-1}(\operatorname{int}_{\theta}(V)) \leq \operatorname{int}_{\theta}(f^{-1}(V))$$
 for each IFS V of Y.

(3) $\operatorname{int}_{\theta}(f(U)) \leq f(\operatorname{int}_{\theta}(U))$ for each IFS U in X.

Proof. By Theorem 4.4, it suffices to show that (2) is equivalent to (3).

 $(2) \Rightarrow (3)$. Let U be an IFS in X. Then f(U) is an IFS in Y. By the hypothesis, $f^{-1}(\operatorname{int}_{\theta}(f(U))) \leq \operatorname{int}_{\theta}(f^{-1}(f(U)))$. Since f is one-to-one,

$$f^{-1}(\operatorname{int}_{\theta}(f(U))) \le \operatorname{int}_{\theta}(f^{-1}(f(U))) = \operatorname{int}_{\theta}(U).$$

Since f is onto,

$$\operatorname{int}_{\theta}(f(U)) = f(f^{-1}(\operatorname{int}(f(U)))) \le f(\operatorname{int}(U)).$$

 $(3) \Rightarrow (2)$. Let V be an IFS in Y. Then $f^{-1}(V)$ is an IFS in X. By the hypothesis, $\operatorname{int}_{\theta}(f(f^{-1}(V))) \leq f(\operatorname{int}_{\theta}(f^{-1}(V)))$. Since f is onto,

$$\operatorname{int}_{\theta}(V) = \operatorname{int}_{\theta}(f(f^{-1}(V))) \le f(\operatorname{int}_{\theta}(f^{-1}(V))).$$

Since f is one-to-one,

$$f^{-1}(\operatorname{int}_{\theta}(V)) \le f^{-1}(f(\operatorname{int}_{\theta}(f^{-1}(V)))) = \operatorname{int}_{\theta}(f^{-1}(V)).$$

Recall that function $f: (X, \mathcal{T}) \to (Y, \mathcal{T}')$ is said to be an *intuitionis*tic fuzzy weakly continuous if and only if for each IFOS V in Y, $f^{-1}(V) \leq$ $int(f^{-1}(cl(V)))$ (See [6]).

Theorem 4.6 ([6]). Let $f : (X, \mathcal{T}) \to (Y, \mathcal{T}')$ be a function. Then the following statements are equivalent:

- (1) f is an intuitionistic fuzzy weakly continuous function.
- (2) $f(cl(U)) \leq cl_{\theta}(f(U))$ for each IFS U in X.
- (3) $\operatorname{cl}(f^{-1}(V)) \leq f^{-1}(\operatorname{cl}_{\theta}(V))$ for each IFS V in Y. (4) $\operatorname{cl}(f^{-1}(V)) \leq f^{-1}(\operatorname{cl}(V))$ for each IFOS V of Y.
- (5) $f^{-1}(\operatorname{int}_{\theta}(V)) \leq \operatorname{int}(f^{-1}(V))$ for each IFS V of Y.

Proof. $(1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4)$. See [6].

(3) \Rightarrow (5). Let V be an IFS in Y. Then V^c is an IFS in Y. Since f is an intuitionistic fuzzy weakly continuous function, by the hypothesis, $cl(f^{-1}(V^{c})) \leq f^{-1}(cl_{\theta}(V^{c}))$. Thus

$$f^{-1}(\operatorname{int}_{\theta}(V)) = f^{-1}((\operatorname{cl}_{\theta}(V^{c}))^{c}) = (f^{-1}(\operatorname{cl}_{\theta}((V^{c}))))^{c}$$
$$\leq (\operatorname{cl}(f^{-1}(V^{c})))^{c} = (\operatorname{cl}((f^{-1}(V))^{c}))^{c} = \operatorname{int}(f^{-1}(V)).$$

 $(5) \Rightarrow (3)$. Let V be an IFS in Y. Then V^c is an IFS in Y. By the hypothesis, $f^{-1}(\operatorname{int}_{\theta}(V^c)) \leq \operatorname{int}(f^{-1}(V^c))$. Thus

$$cl(f^{-1}(V)) = (int((f^{-1}(V))^c))^c = (int(f^{-1}(V^c))^c)$$

$$\leq (f^{-1}(int_{\theta}(V^c)))^c = f^{-1}((int_{\theta}(V^c))^c) = f^{-1}(cl_{\theta}(V)). \quad \Box$$

Theorem 4.7. Let $f: (X, \mathcal{T}) \to (Y, \mathcal{T}')$ be a bijection. Then the following statements are equivalent:

(1) f is an intuitionistic fuzzy weakly continuous function.

- (2) $f^{-1}(\operatorname{int}_{\theta}(V)) \leq \operatorname{int}(f^{-1}(V))$ for each IFS V of Y.
- (3) $\operatorname{int}_{\theta}(f(U)) \leq f(\operatorname{int}(U))$ for each IFS U in X.

Proof. By Theorem 4.6, it suffices to show that (2) is equivalent to (3).

 $(2) \Rightarrow (3)$. Let U be an IFS in X. Then f(U) is an IFS in Y. By the hypothesis, $f^{-1}(\operatorname{int}_{\theta}(f(U))) \leq \operatorname{int}(f^{-1}(f(U)))$. Since f is one-to-one,

$$f^{-1}(\operatorname{int}_{\theta}(f(U))) \le \operatorname{int}(f^{-1}(f(U))) = \operatorname{int}(U).$$

Since f is onto,

$$\operatorname{int}_{\theta}(f(U)) = f(f^{-1}(\operatorname{int}(f(U)))) \le f(\operatorname{int}(U))$$

 $(3) \Rightarrow (2)$. Let V be an IFS in Y. Then $f^{-1}(V)$ is an IFS in X. By the hypothesis, $\operatorname{int}_{\theta}(f(f^{-1}(V))) \leq f(\operatorname{int}(f^{-1}(V)))$. Since f is onto,

$$\operatorname{int}_{\theta}(V) \le f(\operatorname{int} f^{-1}(V))$$

Since f is one-to-one,

$$f^{-1}(\operatorname{int}_{\theta}(V)) \le f^{-1}(f(\operatorname{int}(f^{-1}(V)))) = \operatorname{int}(f^{-1}(V)).$$

References

- [1] K. T. Atanassov, *Intuitionistic fuzzy sets*, Fuzzy Sets and Systems **20** (1986), no. 1, 87–96.
- [2] D. Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), no. 1, 81–89.
- [3] _____, An introduction to fuzzy subspaces in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 4 (1996), no. 4, 749–764.
- [4] D. Çoker and M. Demirci, On intuitionistic fuzzy points, Notes IFS 1 (1995), no. 2, 79-84.
- [5] I. M. Hanafy, Intuitionistic fuzzy functions, International Journal of Fuzzy Logic and Intelligent Systems 3 (2003), no. 2, 200–205.
- [6] I. M. Hanafy, A. M. Abd El-Aziz, and T. M. Salman, Intuitionistic fuzzy θ-closure operator, Bol. Asoc. Mat. Venez. 13 (2006), no. 1, 27–39.
- [7] S. J. Lee and E. P. Lee, Fuzzy r-preopen sets and fuzzy r-precontinuous maps, Bull. Korean Math. Soc. 36 (1999), no. 1, 91–108.
- [8] M. N. Mukherjee and S. P. Sinha, On some near-fuzzy continuous functions between fuzzy topological spaces, Fuzzy Sets and Systems 34 (1990), no. 2, 245–254.
- [9] _____, Fuzzy Θ-closure operator on fuzzy topological spaces, Internat. J. Math. Math. Sci. 14 (1991), no. 2, 309–314.

SEOK JONG LEE DEPARTMENT OF MATHEMATICS CHUNGBUK NATIONAL UNIVERSITY CHEONGJU 361-763, KOREA *E-mail address*: sjl@cbnu.ac.kr

Youn Suk Eoum DEPARTMENT OF MATHEMATICS CHUNGBUK NATIONAL UNIVERSITY CHEONGJU 361-763, KOREA *E-mail address:* math1518@naver.com