αm -OPEN SETS AND αM -CONTINUOUS FUNCTIONS

WON KEUN MIN

ABSTRACT. In this paper, we introduce the notions of αm -open sets and αM -continuous functions and investigate some properties of such concepts.

1. Introduction

In [4], Popa and Noiri introduced the notion of minimal structure which is a generalization of a topology on a given nonempty set. And they introduced the notion of M-continuous functions as functions defined between minimal structures. They showed that the M-continuous functions on minimal structures have properties similar to those of continuous functions between topological spaces.

In this paper, we introduce the notions of αm -open sets, α -interior and α closure operators in minimal structures. We investigate some basic properties of such notions. Also we introduce the notion of αM -continuous functions and study characterizations of αM -continuous functions by using the α -interior and α -closure operators.

2. Preliminaries

Definition 2.1 ([1, 4]). A subfamily m_X of the power set P(X) of a nonempty set X is called a *minimal structure* on X if $\emptyset \in m_X$ and $X \in m_X$. By (X, m_X) , we denote a nonempty set X with a minimal structure m_X on X. Simply we call (X, m_X) a minimal structure on X. Set $M(x) = \{U \in m_X : x \in U\}$.

Definition 2.2 ([1, 4]). Let (X, m_X) be a minimal structure. For a subset A of X, the closure of A and the interior of A are defined as the following:

(1) $mInt(A) = \bigcup \{ U : U \subseteq A, U \in m_X \}.$

(2) $mCl(A) = \cap \{F : A \subseteq F, X - F \in m_X\}.$

Theorem 2.3 ([1, 4]). Let (X, m_X) be a minimal structure and $A \subseteq X$. (1) X = mInt(X) and $\emptyset = mCl(\emptyset)$.

Received October 29, 2008.

2000 Mathematics Subject Classification. 54C08.

Key words and phrases. αm -open sets, αM -continuous functions, M -continuous functions.

O2010 The Korean Mathematical Society

- (2) $mInt(A) \subseteq A$ and $A \subseteq mCl(A)$.
- (3) If $A \in m_X$, then mInt(A) = A and if $X F \in m_X$, then mCl(F) = F.
- (4) If $A \subseteq B$, then $mInt(A) \subseteq mInt(B)$ and $mCl(A) \subseteq mCl(B)$.
- (5) mInt(mInt(A)) = mInt(A) and mCl(mCl(A)) = mCl(A).
- (6) mCl(X A) = X mInt(A) and mInt(X A) = X mCl(A).

Definition 2.4 ([4]). Let (X, m_X) and (Y, m_Y) be two minimal structures. Then $f: X \to Y$ is said to be *M*-continuous if for $x \in X$ and $V \in M(f(x))$, there is $U \in M(x)$ such that $f(U) \subseteq V$.

3. αm -open sets and αM -continity

Definition 3.1. Let (X, m_X) be a minimal structure and $A \subset X$. A subset A of X is called an αm -open set if $A \subseteq mInt(mCl(mInt(A)))$. The complement of an αm -open set is called an αm -closed set. The family of all αm -open sets in X will be denoted by $\alpha M(X)$.

Remark 3.2. Let (X, τ) be a topological space and $A \subseteq X$. A is called an α -open set [3] if $A \subseteq int(cl(int(A)))$. If the minimal structure m_X is a topology, clearly an αm -open set is α -open.

From Definition of 3.1, obviously the following statements are obtained:

Lemma 3.3. Let (X, m_X) be a minimal structure. Then

(1) Every m-open set is α m-open.

(2) A is an αm -closed set if and only if $mCl(mInt(mCl(A))) \subseteq A$.

Theorem 3.4. Let (X, m_X) be a minimal structure. Any union of αm -open sets is αm -open.

Proof. Let A_i be an αm -open set for $i \in J$. From Definition 3.1 and Theorem 2.3(4), it follows

 $A_i \subseteq mInt(mCl(mInt(A_i))) \subseteq mInt(mCl(mInt(\cup A_i))).$

This implies $\cup A_i \subseteq mInt(mCl(mInt(\cup A_i)))$. Hence $\cup A_i$ is an αm -open set.

Remark 3.5. Let (X, m_X) be a minimal structure. The intersection of any two αm -open sets may not be αm -open set as shown in the next example.

Example 3.6. Let $X = \{a, b, c\}$ and $m_X = \{\emptyset, \{a, b\}, \{a, c\}, X\}$ a minimal structure in X. Then obviously $\{a, b\}$ and $\{a, c\}$ are α -m open sets. But $\{a\}$ is not α m-open because of $mInt(mCl(mInt(\{a\}))) = \emptyset$. Thus the intersection of two α m-open sets $\{a, b\}$ and $\{a, c\}$ is not α m-open.

Definition 3.7. Let (X, m_X) be a minimal structure. For a subset A of X, the α -closure of A and the α -interior of A, denoted by $\alpha mCl(A)$ and $\alpha mInt(A)$, respectively, are defined as the following:

$$\alpha mCl(A) = \cap \{F : A \subseteq F, F \text{ is } \alpha m\text{-closed in } X\},\\ \alpha mInt(A) = \cup \{U : U \subseteq A, U \text{ is } \alpha m\text{-open in } X\}.$$

Theorem 3.8. Let (X, m_X) be a minimal structure and $A \subset X$. Then

- (1) $\alpha mInt(A) \subseteq A$.
- (2) If $A \subseteq B$, then $\alpha mInt(A) \subseteq \alpha mInt(B)$.
- (3) A is αm -open if and only if $\alpha mInt(A) = A$.
- (4) $\alpha mInt(\alpha mInt(A)) = \alpha mInt(A).$

(5) $\alpha mCl(X - A) = X - \alpha mInt(A)$ and $\alpha mInt(X - A) = X - \alpha mCl(A)$.

Proof. (1), (2) Obvious.

- (3) It follows from Theorem 3.4.
- (4) It follows from (3).

(5) For $A \subseteq X$,

$$X - \alpha mInt(A) = X - \bigcup \{U : U \subseteq A, U \text{ is } \alpha m\text{-open}\}$$
$$= \cap \{X - U : U \subseteq A, U \text{ is } \alpha m\text{-open}\}$$
$$= \cap \{X - U : X - A \subseteq X - U, U \text{ is } \alpha m\text{-open}\}$$
$$= \alpha mCl(X - A).$$

Similarly, we have $\alpha mInt(X - A) = X - \alpha mCl(A)$.

Theorem 3.9. Let (X, m_X) be a minimal structure and $A \subset X$. Then

- (1) $A \subseteq \alpha mCl(A)$.
- (2) If $A \subseteq B$, then $\alpha mCl(A) \subseteq \alpha mCl(B)$.
- (3) F is αm -closed if and only if $\alpha mCl(F) = F$.
- (4) $\alpha mCl(\alpha mCl(A)) = \alpha mCl(A).$

Proof. It is similar to the proof of Theorem 3.8.

Theorem 3.10. Let (X, m_X) be a minimal structure and $A \subseteq X$. Then

(1) $x \in \alpha mCl(A)$ if and only if $A \cap V \neq \emptyset$ for every αm -open set V containing x.

(2) $x \in \alpha mInt(A)$ if and only if there exists an αm -open set U such that $U \subset A$.

Proof. (1) Suppose there is an αm -open set V containing x such that $A \cap V = \emptyset$. Then X - V is an αm -closed set such that $A \subseteq X - V$, $x \notin X - V$. This implies $x \notin \alpha mCl(A)$.

The reverse relation is obvious.

(2) Obvious.

Definition 3.11. Let $f: X \to Y$ be a function between minimal structures (X, m_X) and (Y, m_Y) . Then f is said to be αM -continuous if for each x and each m-open set V containing f(x), there exists an αm -open set U containing x such that $f(U) \subseteq V$.

Every M-continuous function is αM -continuous but the converse may not be true.

253

Example 3.12. Let $X = \{a, b, c\}$. Consider two minimal structures defined as follows: $m_1 = \{\emptyset, \{a\}, X\}, m_2 = \{\emptyset, \{a, b\}, \{a, c\}, X\}.$

Let $f: (X, m_1) \to (X, m_2)$ be the identity function. Then f is αM -continuous but not M-continuous.

Remark 3.13. Let $f: X \to Y$ be an αM -continuous function between minimal structures (X, m_X) and (Y, m_Y) . If the minimal structures (X, m_X) and (Y, m_Y) are topologies on X and Y, respectively, then f is α -continuous [2].

Theorem 3.14. Let $f : X \to Y$ be a function on two minimal structures (X, m_X) and (Y, m_Y) . Then the following statements are equivalent:

- (1) f is αM -continuous.
- (2) $f^{-1}(V)$ is an αm -open set for each m-open set V in Y.
- (3) $f^{-1}(B)$ is an αm -closed set for each m-closed set B in Y.
- (4) $f(\alpha mCl(A)) \subseteq mCl(f(A))$ for $A \subseteq X$.
- (5) $\alpha mCl(f^{-1}(B)) \subseteq f^{-1}(mCl(B))$ for $B \subseteq Y$.
- (6) $f^{-1}(mInt(B)) \subseteq \alpha mInt(f^{-1}(B))$ for $B \subseteq Y$.

Proof. (1) \Rightarrow (2) Let V be an m-open set in Y and $x \in f^{-1}(V)$. By hypothesis, there exists an αm -open set U_x containing x such that $f(U) \subseteq V$. This implies $x \in U_x \subseteq f^{-1}(V)$ for all $x \in f^{-1}(V)$. Hence by Theorem 3.4, $f^{-1}(V)$ is αm -open.

 $\begin{aligned} (2) &\Rightarrow (3) \text{ Obvious.} \\ (3) &\Rightarrow (4) \text{ For } A \subseteq X, \\ f^{-1}(mCl(f(A))) &= f^{-1}(\cap \{F \subseteq Y : f(A) \subseteq F \text{ and } F \text{ is } m\text{-closed}\}) \\ &= \cap \{f^{-1}(F) \subseteq X : A \subseteq f^{-1}(F) \text{ and } F \text{ is } \alpha m\text{-closed}\} \\ &\supseteq \cap \{K \subseteq X : A \subseteq K \text{ and } K \text{ is } \alpha m\text{-closed}\} \\ &= \alpha mCl(A). \end{aligned}$

Hence $f(\alpha mCl(A)) \subseteq mCl(f(A))$. (4) \Rightarrow (5) For $A \subseteq X$, from (4), it follows

$$f(\alpha mCl(f^{-1}(A))) \subseteq mCl(f(f^{-1}(A))) \subseteq mCl(A).$$

Hence we get (5).

(5) \Rightarrow (6) For $B \subseteq Y$, from mInt(B) = Y - mCl(Y - B) and (5), it follows: $f^{-1}(mInt(B)) = f^{-1}(Y - mCl(Y - B))$ $= X - f^{-1}(mCl(Y - B))$ $\subseteq X - \alpha mCl(f^{-1}(Y - B))$ $= \alpha mInt(f^{-1}(B)).$

Hence (6) is obtained.

(6) \Rightarrow (1) Let $x \in X$ and V an *m*-open set containing f(x). Then from (6) and Theorem 2.5, it follows $x \in f^{-1}(V) = f^{-1}(mInt(V)) \subseteq \alpha mInt(f^{-1}(V))$.

So from Theorem 3.10, we can say that there exists an αm -open set U containing x such that $x \in U \subseteq f^{-1}(V)$. Hence f is αM -continuous.

Lemma 3.15. Let (X, m_X) be a minimal structure and $A \subseteq X$. Then

(1) $mCl(mInt(mCl(A))) \subseteq mCl(mInt(mCl(\alpha mCl(A)))) \subseteq \alpha mCl(A).$

(2) $\alpha mInt(A) \subseteq mInt(mCl(mInt(\alpha mInt(A)))) \subseteq mInt(mCl(mInt(A)));$

Proof. (1) For $A \subset X$, by Theorem 3.9, $\alpha mCl(A)$ is an αm -closed set. Hence from Lemma 3.3, we have

 $mCl(mInt(mCl(A))) \subseteq mCl(mInt(mCl(\alpha mCl(A)))) \subseteq \alpha mCl(A).$

(2) It is similar to the proof of (1).

Theorem 3.16. Let $f : X \to Y$ be a function on two minimal structure (X, m_X) and (Y, m_Y) . Then the following statements are equivalent:

(1) f is αM -continuous.

(2) $f^{-1}(V) \subseteq mInt(mCl(mInt(f^{-1}(V))))$ for each m-open set V in Y.

(3) $mCl(mInt(mCl(f^{-1}(F)))) \subseteq f^{-1}(F)$ for each m-closed set F in Y.

(4) $f(mCl(mInt(mCl(A)))) \subseteq mCl(f(A))$ for $A \subseteq X$.

(5) $mCl(mInt(mCl(f^{-1}(B)))) \subseteq f^{-1}(mCl(B))$ for $B \subseteq Y$.

(6) $f^{-1}(mInt(B)) \subseteq mInt(mCl(mInt(f^{-1}(B))))$ for $B \subseteq Y$.

Proof. (1) \Leftrightarrow (2) It follows from Theorem 3.14 and definition of αm -open sets. (1) \Leftrightarrow (3) It follows from Theorem 3.14 and Lemma 3.3.

 $(3) \Rightarrow (4)$ Let $A \subseteq X$. Then from Theorem 3.14 (4) and Lemma 3.15, it follows $mCl(mInt(mCl(A))) \subseteq \alpha mCl(A)) \subseteq f^{-1}(mCl(f(A)))$.

Hence $f(mCl(mInt(mCl(A)))) \subseteq mCl(f(A)).$

 $(4) \Rightarrow (5)$ Obvious.

 $(5) \Rightarrow (6)$ From (5) and Theorem 2.3, it follows:

$$f^{-1}(mInt(B)) = f^{-1}(Y - mCl(Y - B))$$

= $X - f^{-1}(mCl(Y - B))$
 $\subseteq X - mCl(mInt(mCl(f^{-1}(Y - B))))$
= $mInt(mCl(mInt(f^{-1}(B)))).$

Hence, (6) is obtained.

 $(6) \Rightarrow (1)$ Let V be an m-open set in Y. Then by (6) and Theorem 2.3, we have $f^{-1}(V) = f^{-1}(mInt(V)) \subseteq mInt(mCl(mInt(f^{-1}(V))))$. This implies $f^{-1}(V)$ is an αm -open set. Hence by (2), f is αM -continuous.

References

- H. Maki, On generalizing semi-open and preopen sets, Report for Meeting on Topological Spaces Theory and its Applications, August 1996, Yatsushiro College of Technology, 13– 18.
- [2] A. S. Mashhour, I. A. Hasanein, and S. N. El-Deeb, α-continuous and α-open mappings, Acta Math. Hungar. 41 (1983), 213–218.

255

WON KEUN MIN

- [3] O. Njåstad, On some classes of nearly open sets, Pacific journal of mathematics 15 (1964), no. 3, 961–970.
- [4] V. Popa and T. Noiri, On M-continuous functions, Anal, Univ. "Dunarea de Jos" Galati, Ser. Mat. Fiz. Mec. Teor., Fasc. II, 18 (2000), no. 23, 31–41.

Department of Mathematics Kangwon National University Chuncheon 200-701, Korea *E-mail address*: wkmin@kangwon.ac.kr