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LOCALLY CONFORMAL KÄHLER MANIFOLDS AND
CONFORMAL SCALAR CURVATURE

Jaeman Kim

Abstract. We show that on a compact locally conformal Kähler mani-
fold M2n (dim M2n = 2n ≥ 4), M2n is Kähler if and only if its conformal
scalar curvature k is not smaller than the scalar curvature s of M2n every-
where. As a consequence, if a compact locally conformal Kähler manifold
M2n is both conformally flat and scalar flat, then M2n is Kähler. In con-
trast with the compact case, we show that there exists a locally conformal
Kähler manifold with k equal to s, which is not Kähler.

1. Introduction

A locally conformal Kähler (lck) manifold M2n = (M2n, J, g) (dim M2n =
2n ≥ 4) is a Hermitian manifold (i.e., the metric g of M2n is compatible with
complex structure J) whose metric g is locally conformal to a Kähler metric,
which is equivalent to the existence of an 1-form θ (called Lee form) of M2n such
that dΩ = θ∧Ω and dθ = 0 [10], [11], where Ω is the Kähler form of M2n. From
the viewpoint of conformal geometry, we can define a conformally well-behaved
function (namely, conformal scalar curvature) k on M2n associated with Weyl
curvature tensor, which appeared in the literature of Hermitian geometry [1],
[4], [5]. It is well known that the standard Hopf surface M4 is a compact
lck manifold with positive scalar curvature s and vanishing conformal scalar
curvature k, which is not Kähler. In this note, we investigate a condition of
the conformal scalar curvature k for a compact lck manifold M2n to be Kähler
and show that the sign of difference between k and s is a crucial condition
for a compact lck manifold M2n to be Kähler. More precisely, we prove the
following:
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Theorem 1.1. Let M2n = (M2n, J, g) be a compact lck manifold. Then M2n

is Kähler if and only if its conformal scalar curvature k is not smaller than the
scalar curvature s of M2n everywhere.

As a consequence, we have:

Corollary 1.2. If a compact lck manifold M2n is conformally flat, and its
scalar curvature vanishes, then M2n is Kähler.

Contrary to the compact case, we obtain the following:

Theorem 1.3. Let R2n
+ = {(x1, x2, . . . , x2n)|x2n > 0} and J be the natural

complex structure defined by J
(

∂
∂x2i−1

)
= ∂

∂x2i
, J

(
∂

∂x2i

)
=− ∂

∂x2i−1
. And a met-

ric g = (gij) on R2n
+ is given by gij = x

4
2n−2
2n δij. Then M = (R2n

+ , J, g) is a lck
manifold with k = s, which is not Kähler.

2. Preliminaries

We shall denote by M2n = (M2n, J, g) (dim M2n = 2n ≥ 4) a lck manifold;
by g its metric; by {Uα} an open covering of M2n endowed with smooth func-
tions fα on Uα such that g̃α = e−fαg are Kähler metrics; by J the complex
structure; by ∇ the Levi-Civita connection of g; by θ the Lee form of M2n,
which satisfies dΩ = θ ∧ Ω and dθ = 0, where Ω is the Kähler form of M2n,
i.e., g(X, JY ) = Ω(X, Y ). Note that M2n is Kähler if and only if θ = 0. The
Riemannian curvature tensor R, the Ricci tensor Ric and the scalar curvature
s are given by

R(X, Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z,

Ric(X,Y ) = Trace{Z → R(Z,X)Y }, s = TracegRic.

Furthermore, the ∗-Ricci tensor and ∗-scalar curvature of (J, g) are given by

Ric∗(X, Y ) = Trace{Z → −JR(Z, X)JY }, s∗ = TracegRic∗.

The Riemannian metric g induces a metric on the bundle
∧2 of 2-vectors on

M2n by
〈Xk ∧Xl, Yp ∧ Yq〉 = det(g(Xi, Yj)).

Similarly, one can define a metric on the bundle
∧2 of 2-forms on M2n by

〈A ∧B,C ∧D〉 = 〈A] ∧B], C] ∧D]〉.
Here the symbol ] is the natural isomorphism from 1-forms to vector fields. We
also regard the curvature tensor as a (0,4)-tensor or an endomorphism of the
2-form bundle as follows:

R(X, Y, Z, V ) = −g(R(X, Y )Z, V ), 〈R(A ∧B), C ∧D〉 = R(A], B], C], D]).

The Riemannian curvature tensor R has the following well known SO(2n)-
decomposition [2], [6], [7];

(2.1) R =
s

4n(2n− 1)
g ? g +

1
2n− 2

Rico ? g + W,
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where Rico is the traceless Ricci tensor and W is the Weyl curvature tensor.
Here the symbol ? is the Nomizu-Kulkarni product of symmetric (0,2)-tensors
generating a curvature type tensor. Note that Rico = 0 if and only if M2n is
Einstein [2], [7], [8]; W = 0 if and only if M2n is conformally flat [2], [6]. Now
we define the conformal scalar curvature k of M2n by

k =
2n− 1
n− 1

〈W (Ω), Ω〉.
In particular, if 2n = 4, then k = 3〈W+(Ω), Ω〉, which appeared in the literature
of Hermitian geometry [1], [4]. Therefore, if M2n is conformally flat, then the
conformal scalar curvature k of M2n is zero. Note that k has conformal weight
−2, that is, if we replace g by f2g for some non-vanishing function f , then k
is replaced by f−2k.

3. Proof of Theorem 1.1

Let M2n = (M2n, J, g) be a compact lck manifold. From the relation (2.1)
and 〈(Rico ? g)(Ω),Ω〉 = 0, we obtain

〈R(Ω),Ω〉 =
s

4n(2n− 1)
2〈Ω, Ω〉+ 〈W (Ω), Ω〉.

Therefore, from 〈Ω, Ω〉 = n and the definitions of s∗ and k, the above identity
yields

s∗

2
=

s

2(2n− 1)
+

n− 1
2n− 1

k,

which implies

(3.2) s− k =
2n− 1
2n− 2

(s− s∗).

Now suppose that M2n is Kähler and hence s and s∗ coincide; this is a con-
sequence of the Kähler identity [2] R(X, Y )(JZ) = J(R(X,Y )Z), which itself
follows from the fact that ∇J = 0. Therefore, the equation (3.2) implies k = s.
Conversely, let a compact lck manifold M2n satisfy k ≥ s. And assume that
g̃ = e−fg is the lck metric of g. Then one gets the well-known formula [3], [9]

ef g̃(R̃(X,Y )Z, W ) = g(R(X,Y )Z, W )− 1
2
{L(X, Z)g(Y, W )− L(Y, Z)g(X, W )

+ L(Y, W )g(X, Z)− L(X, W )g(Y,Z)}

− ||θ||2
4
{g(Y, Z)g(X, W )− g(X,Z)g(Y, W )},

which yields
g(R(X, Y )Z,W )− g(R(X, Y )JZ, JW )

=
1
2
{L(X, Z)g(Y, W )− L(Y, Z)g(X, W ) + L(Y, W )g(X, Z)− L(X,W )g(Y, Z)}

+
||θ||2

4
{g(Y,Z)g(X,W )− g(X, Z)g(Y, W )}
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− 1
2
{L(X, JZ)g(Y, JW )− L(Y, JZ)g(X,JW )

+ L(Y, JW )g(X, JZ)− L(X,JW )g(Y, JZ)}

− ||θ||2
4
{g(Y, JZ)g(X,JW )− g(X, JZ)g(Y, JW )},

where L(X, Y ) = (∇Xθ)Y + 1
2θ(X)θ(Y ) and so L(X, Y ) = L(Y, X) since θ

is closed. Now if we take X = ∂
∂xi

, Y = ∂
∂xj

, Z = ∂
∂xk

,W = ∂
∂xl

, where xi

(i = 1, . . . , 2n) are real coordinates on M2n, and contract with gilgjk, and then
use the identity (3.2), we get the following [3], [5], [9]:

(3.3) s− k =
2n− 1
2n− 2

(2(n− 1)δθ + (n− 1)2||θ||2),
where δθ = −divθ.
By integrating (3.3) over M2n, we conclude that the condition of k ≥ s yields
θ = 0. Summing up the above arguments, we conclude that on a compact lck
manifold, the Kähler condition is equivalent to that of k ≥ s. This completes
the proof of Theorem 1.1 and hence it is obvious that Corollary 1.2 holds
because of k = s.

4. A lck manifold with k equal to s which is not Kähler

Let R2n
+ = {(x1, x2, . . . , x2n)|x2n > 0} and J be the natural complex struc-

ture defined by J
(

∂
∂x2i−1

)
= ∂

∂x2i
, J

(
∂

∂x2i

)
=− ∂

∂x2i−1
. We define a Riemannian

metric g = (gij) on R2n
+ by gij = x

4
2n−2
2n δij . It is obvious that the metric g is

compatible with complex structure J . With respect to { ∂
∂x1

, ∂
∂x2

, . . . , ∂
∂x2n

},
we set ∇ ∂

∂xi

∂
∂xj

=
∑

k=1,...,2n Γk
ij

∂
∂xk

for 1 ≤ i, j ≤ 2n. Then the Christoffel

symbol Γk
ij of metric g is obtained as follows:

Γ1
1(2n) = Γ1

(2n)1 = Γ2
2(2n) = Γ2

(2n)2 = · · ·

= Γ2n−1
(2n−1)2n = Γ2n−1

2n(2n−1) =
2

2n− 2
(

1
x2n

),

Γ2n
2n(2n) =

2
2n− 2

(
1

x2n
), Γ2n

11 = Γ2n
22 = · · ·

= Γ2n
(2n−1)(2n−1) = − 2

2n− 2
(

1
x2n

)

and are otherwise zero. And so we have
R2

121 = R3
131 = · · · = R2n−1

1(2n−1)1 = R1
212 = R3

232 = · · · = R2n−1
2(2n−1)2

= · · · = R1
(2n−2)1(2n−2) = R2

(2n−2)2(2n−2) = · · ·
= R2n−1

(2n−2)(2n−1)(2n−2) = R1
(2n−1)1(2n−1) = R2

(2n−1)2(2n−1)

= · · · = R2n−2
(2n−1)(2n−2)(2n−1) = − 4

(2n− 2)2
(

1
x2

2n

),
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R1
(2n)1(2n) = R2n

1(2n)1 = R2
(2n)2(2n) = R2n

2(2n)2 = R3
(2n)3(2n)

= R2n
3(2n)3 = · · · = R2n

(2n−1)(2n)(2n−1) =
2

2n− 2
(

1
x2

2n

)

and are otherwise zero. Here Rp
jlk = gpiRijlk and Rijlk = g(R( ∂

∂xi
, ∂

∂xj
, ∂

∂xk
), ∂

∂xl
).

Hence we get
s = s∗ = 0,

which yields from the equation (3.2)

s = k.

On the other hand, we have

dΩ =
4

2n− 2
(

1
x2n

)dx2n ∧ Ω,

which implies that the Lee form θ = 4
2n−2 ( 1

x2n
)dx2n of M2n is closed. Summing

up the above arguments, we obtain that R2n
+ allows a lck structure (J, g) with

k = s, which is not Kähler. This completes the proof of Theorem 1.3.
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