
Commun. Korean Math. Soc. 25 (2010), No. 2, pp. 215–224
DOI 10.4134/CKMS.2010.25.2.215

FULL QUADRATURE SUMS FOR GENERALIZED
POLYNOMIALS WITH FREUD WEIGHTS

Haewon Joung

Abstract. Generalized nonnegative polynomials are defined as products
of nonnegative polynomials raised to positive real powers. The general-
ized degree can be defined in a natural way. In this paper we extend
quadrature sums involving pth powers of polynomials to those for gener-
alized polynomials.

1. Introduction

In 1969, Askey [1] proposed the following problem: Let P ∈ Pn, where Pn

denotes the set of all polynomials of degree at most n. Let {xn,j} be the zeros
of the orthogonal polynomials with respect to dα, a positive measure on [−1, 1],
and {λn,j} be the Cotes numbers for dα. When is it true that

(1.1)
n∑

j=1

λn,j |P (xn,j)|p ≤ C

∫ 1

−1

|P (x)|pdα(x),

where C is independent of P and n? Such inequalities are essential in various
problems in approximation theory, and in particular, in investigating mean
convergence of Lagrange interpolation and orthogonal expansions.

Of course when p = 2, the Gauss quadrature formula asserts equality in (1.1)
with C = 1. Askey proved (1.1) for certain Jacobi weights for p ≥ 1. Nevai
[15] proved (1.1) for generalized Jacobi weights and P ∈ Pln with l ≥ 2 fixed.
A further generalization, valid for 0 < p < ∞, and P ∈ Pln with l > 1 fixed,
was proved in [10]. A converse inequality has been proven in [16].

For the Freud weights, Lubinsky, Máté, and Nevai [10, Corollary 9, p. 536]
proved (1.1) with the range of summation suitably restricted, and subsequently,
Lubinsky and Matjila [13] provided a solution for the Freud weights as follows:
Let r > 0, and b ∈ (−∞, 2]. Then we have for 1 ≤ p < ∞

(1.2)
n∑

j=1

λn,j |PW |p(xn,j)W−b(xn,j) ≤ C

∫ ∞

−∞
|PW |(t)W 2−b(t)dt
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for every polynomial P of degree at most n+rn1/3, where W 2(x) = exp(−|x|α),
(α > 1), {λn,j} are the Cotes numbers, and {xn,j} are the zeros of the orthonor-
mal polynomials for W 2.

The aim of this paper is to extend inequalities such as (1.2) to generalized
polynomials.

A generalized nonnegative algebraic polynomial is a function of the type

f(z) = |ω|
m∏

j=1

|z − zj |rj (0 6= ω ∈ C)

with rj ∈ R+, zj ∈ C, and the number

n
def=

m∑

j=1

rj

is called the generalized degree of f . Note that n > 0 is not necessarily an
integer. Thus throughout this paper we assume that n ∈ R+ unless stated
otherwise.

We denote by GANPn the set of all generalized nonnegative algebraic poly-
nomials of degree at most n ∈ R+.

Using
|z − zj |rj = ((z − zj)(z − z̄j))rj/2, z ∈ R,

we can easily check that when f ∈ GANPn is restricted to the real line, then
it can be written as

f =
m∏

j=1

P
rj/2
j , 0 ≤ Pj ∈ P2, rj ∈ R+,

m∑

j=1

rj ≤ n,

which is the product of nonnegative polynomials raised to positive real powers.
This explains the name generalized nonnegative polynomials. Many properties
of generalized nonnegative polynomials were investigated in a series of papers
([2, 3, 4, 5]).

Associated with the Freud weight Wα(x) = exp(−|x|α), α > 0, there are
Mhaskar-Rahmanov-Saff numbers an = an(α), which is the positive solution of
the equation

n =
2
π

∫ 1

0

antQ′(ant)(1− t2)−
1
2 dt, n ∈ R+,

where Q(x) = |x|α, α > 0. Explicitly,

an = an(α) =
(

n

λα

)1/α

, n ∈ R+,

where

λα =
22−αΓ(α)
{Γ(α/2)}2 .
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Its importance lies partly in the identity

(1.3) ‖PWα‖L∞(R) = ‖PWα‖L∞([−an,an]), P ∈ Pn.

Now we state our result.

Theorem 1.1. Let Wα(x) = exp(−|x|α), α > 1, and 0 < p < ∞. Let K > 0,
` ≥ 1, and let

−Kan ≤ yM < yM−1 < · · · < y1 ≤ Kan

and
δ = min{yj−1 − yj : j = 2, 3, . . . , M} > 0.

Let Ψ be convex, nonnegative, and nondecreasing in [0,∞). Then for all f ∈
GANP`n, 2p2

`p+4 ≤ n ∈ R+,

M∑

j=1

Ψ(f(yj)W p
α(yj)) ≤ C1

(
n

an
+

1
δ

) ∫ ∞

−∞
Ψ(C2f(u)W p

α(u))du.

The constants C1 and C2 are independent of M , δ, {yj}, n, and f .

Theorem 1.2. Let Wα(x) = exp(−|x|α), α > 1. Let 0 < p < ∞, ` ≥ 1, and
2p2

`p+4 ≤ n ∈ N. Let {xn,j} be the zeros of orthogonal polynomial Pn(W 2
α;x) and

{λn,j} be the Cotes numbers for W 2
α. Then, there exists a positive constant C

such that
n∑

j=1

λn,jf(xn,j)W p−2
α (xn,j)

(
max

{
n−

2
3 , 1− |xn,j |

an

}) 1
2

≤ C

∫ ∞

−∞
f(u)W p

α(u)du

(1.4)

for f ∈ GANP`n.

In proving (1.2), refined Markov type inequalities [13] were used. We have
to insert the square root factor on the left hand side of (1.4) because we do not
have refined Markov type inequalities for generalized polynomials.

Throughout this paper we write gn(x) ∼ hn(x) if for every n and for every
x in consideration

0 < c1 ≤ gn(x)
hn(x)

≤ c2 < ∞,

and g(x) ∼ h(x), n ∼ N have similar meanings.

2. Proof of theorems

In order to prove Theorems 1.1 and 1.2, we need lemmas on Infinite-Finite
range inequalities and estimates of Christoffel functions for generalized poly-
nomials.

In the analysis of extremal polynomials on R, the estimation of the norm of
a weighted polynomial ‖PW‖Lp(R) in terms of the norm ‖PW‖Lp(−cn,cn) over
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an finite interval (−cn, cn) is important because such estimations or inequali-
ties reduce problems over an infinite interval to problems on a finite interval.
Mhaskar and Saff [14] established sharper inequalities that led to nth root
asymptotics for extremal polynomials, for p = ∞ they showed that

‖PWα‖L∞(R) = ‖PWα‖L∞([−an,an]), P ∈ Pn.

For generalized nonnegative polynomials we have the following lemma, which
is the restatement of Theorem 2.1 in [7. p. 124].

Lemma 2.1. Let Wα(x) = exp(−|x|α), α > 0. Then

(2.1) ‖fWα‖L∞(R) = ‖fWα‖L∞([−an,an])

for all f ∈ GANPn, n ∈ R+.
If 0 < p < ∞, then there exist positive constants C1 and C2 so that, whenever

(2.2)
n

(log n)2
≥ Kn ≥ C1, 2 ≤ n ∈ R+

and

(2.3) δn =
(

Kn log n

n

)2/3

, 2 ≤ n ∈ R+,

then

(2.4) ‖fWα‖Lp(R) ≤ (1 + n−C2Kn)‖fWα‖Lp([−an(1+δn),an(1+δn)])

for all f ∈ GANPn, n ≥ 2.

Proof. See the proof of Theorem 2.1 in [7. p. 124]. ¤

Next we define generalized Christoffel functions. Let 0 < p < ∞. Then the
generalized Christoffel function for ordinary polynomials is defined by

λn,p(Wα;x) = min
P∈Pn−1

∫ ∞

−∞

|P (t)Wα(t)|p
|P (x)|p dt, x ∈ R, n ∈ N.

The generalized Christoffel function for generalized nonnegative polynomials
is defined by

ωn,p(Wα;x) = inf
f∈GANPn

∫ ∞

−∞

(f(t)Wα(t))p

fp(x)
dt, x ∈ R, n ∈ R+.

For the estimates of ωn,p(Wα;x), we need the following lemma, which is the
restatement of Theorem 2.3 in [7, p. 125].

Lemma 2.2. Let Wα(x) = exp(−|x|α), α > 1. Let 0 < p < ∞. Then

ωn,p(Wα;x) ≥ C
an

n
W p

α(x), x ∈ R, n ∈ R+,

and
ωn,p(Wα;x) ≤ λ[n]+1,p(Wα; x), x ∈ R, n ∈ R+,

where [n] denotes the integer part of n.
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Proof. See the proof of Theorem 2.3 in [7, p. 125]. ¤

Remark. It is well known (see, for example, [8]) that if α > 1, then there exist
positive constants C1 and C2 depending on p and α, such that

λ[n]+1,p(Wα;x) ≤ C1
an

n
W p

α(x), |x| ≤ C2an.

Consequently
ωn,p(Wα;x) ∼ an

n
W p

α(x), |x| ≤ C2an.

Now we prove our results.

Proof of Theorem 1.1. Let Wα(x) = exp(−|x|α), α > 1, 0 < p < ∞. Fix
K > 0 and ` ≥ 1. Let Ψ be convex, nonnegative, and nondecreasing in [0,∞).
By Lemma 2.1, there exists a positive constant B∗ such that

(2.5) ‖fWα‖Lp(R) ≤ 2‖fWα‖Lp([−B∗an,B∗an]), (0 < p < ∞)

for n ≥ 2, f ∈ GANPn. Let k = 4/p and B ≥ B∗(` + k). Then

(2.6) B∗a(`+k)n ≤ Ban.

Now let pj(v, x), j = 0, 1, 2, . . . , be the orthonormal Chebyshev polynomials
associated with the Chebyshev weight

v(t) =

{
(1− t2)−1/2, t ∈ (−1, 1),

0, t 6∈ (−1, 1).

and let

Km(v, x, t) =
m−1∑

j=0

pj(v, x)pj(v, t), m ∈ N.

Let f ∈ GANP`n, (` + k)n ≥ 2, and let N = [n] + 1. Then for each fixed x,

f(t)
∣∣∣∣KN

(
v,

x

Ban
,

t

Ban

)∣∣∣∣
k

is a generalized polynomial in t of degree less than (` + k)n. By Lemma 2.2,
(2.5), and (2.6), we have for all t ∈ R,

fp(t)W p
α(t)|Kk

N (v, x/(Ban), t/(Ban))|p

≤ c1
n

an

∫ ∞

−∞
fp(u)W p

α(u)K4
N (v, x/(Ban), u/(Ban))du

≤ c2
n

an

∫ Ban

−Ban

fp(u)W p
α(u)K4

N (v, x/(Ban), u/(Ban))du.

Set t = x. Then for all x ∈ R,

fp(x)W p
α(x)K4

N (v, x/(Ban), x/(Ban))

≤ c2
n

an

∫ Ban

−Ban

fp(u)W p
α(u)K4

N (v, x/(Ban), u/(Ban))du.
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Since
K4

N (v, x/(Ban), x/(Ban)) ∼ N4 ∼ n4 for |x| ≤ Ban,

(see, [15, p. 108]), we have

(2.7) fp(x)W p
α(x) ≤ c3

1
n3an

∫ Ban

−Ban

fp(u)W p
α(u)K4

N (v, x/(Ban), u/(Ban))du

for |x| ≤ Ban. By Theorem 2.2 in [10, p. 537], we have for |x| ≤ Ban

2 ,
∫ Ban

−ban

K4
N (v, x/(Ban), u/(Ban))du

= Ban

∫ 1

−1

K4
N (v, x/(Ban), u)du ∼ anN3 ∼ ann3.

Using Jensen’s inequality and (2.7), we obtain for |x| ≤ Ban

2 ,

Ψ(fp(x)W p
α(x))

≤ Ψ

(∫ Ban

−Ban
c4f

p(u)W p
α(u)K4

N (v, x/(Ban), u/(Ban))du
∫ Ban

−Ban
K4

N (v, x/(Ban), u/(Ban))du

)

≤
∫ Ban

−Ban
Ψ(c4f

p(u)W p
α(u))K4

N (v, x/(Ban), u/(Ban))du
∫ Ban

−Ban
K4

N (v, x/(Ban), u/(Ban))du

≤ c5
1

ann3

∫ Ban

−Ban

Ψ(c4f
p(u)W p

α(u))K4
N (v, x/(Ban), u/(Ban))du.

Since

K4
N

(
v,

x

Ban
,

u

Ban

)
≤ c6n

2K2
N

(
v,

x

Ban
,

u

Ban

)
, |x| ≤ Ban, |u| ≤ Ban,

we have
Φ(fp(x)W p

α(x))

≤ c7
1

ann

∫ Ban

−Ban

Ψ(c4f
p(u)W p

α(u))K2
N (v, x/(Ban), u/(Ban))du

(2.8)

for |x| ≤ Ban

2 .
Now, let

−Kan ≤ yM < yM−1 < · · · < y1 ≤ Kan,

and
δ = min{yj−1 − yi : j = 2, 3, . . . , M} > 0.

We can assume that K ≤ B/2 so that |yj/(Ban)| ≤ 1/2 for j = 1, 2, . . . , M .
As

d

dx
arccos(x) ∼ −1 for |x| ≤ 1/2,
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we have

arccos(yj/(Ban))− arccos(yj−1/(Ban)) ≥ c8
yj−1 − yj

an
≥ c8

δ

an
.

Then by Lemma 2.3 in [10, p. 539], we obtain

M∑

j=1

K2
N

(
v,

yj

Ban
,

u

Ban

)
≤ 8

π2
N

(
N +

c9an

δ

)
for |u| ≤ Ban.

Using (2.8) and the above inequality, we have for all f ∈ GANP`n, n ≥ 2
`+k =

2p
`p+4 ,

M∑

j=1

Ψ(fp(yj)W p
α(yj)) ≤ c10

(
n

an
+

1
δ

) ∫ ∞

−∞
Ψ(c4f

p(u)W p
α(u))du,

which yields Theorem 1.1. ¤

Lemma 2.3. Let xn,n < xn,n−1 < · · · < xn,1 be the zeros of orthogonal poly-
nomial Pn(W 2

α; x), α > 1. Then there exists a positive constant C such that

xn,j−1 − xn,j ≥ C
an

n
for j = 2, . . . , n.

Proof. By Theorem 5.1 in [6, p. 36], there exists η ∈ (0, 1) such that

(2.9) xn,j−1 − xn,j ∼ an

n
for |xn,j | ≤ ηan.

By Theorem 7.6 in [8, p. 168]

(2.10)
(∫ ∞

−∞
|P (t)Wα(t)|2dt

) 1
2

≥ c1

(an

n

) 1
2 ‖PWα‖L∞(R), P ∈ Pn−1.

Let

gn(x) =
(

max
{

n−
2
3 , 1− |x|

an

}) 1
2

.

By Theorem 1.9 in [9, p. 470],

(2.11) ‖PWα‖L∞(R) ≥ c2
an

n
g−1

n (x)|(PWα)′(x)|

for |x| ≥ ηan, P ∈ Pn−1. By (2.10) and (2.11), we have
∫∞
−∞ |P (t)Wα(t)|2dt

|(PWα)′2
≥ c3

(an

n

)3

g−2
n (x)

for |x| ≥ ηan, and for all P ∈ Pn−1, hence

inf
P∈Pn−1

∫∞
−∞ |P (t)Wα(t)|2dt

|(PWα)′2
≥ c3

(an

n

)3

g−2
n (x) for |x| ≥ ηan.
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Since

inf
P∈Pn−1

∫∞
−∞ |P (t)Wα(t)|2dt

|(PWα)′2
=

1
∑n−1

i=0

(
d
dxPi(W 2

α; x)Wα(x)
)2 ,

(see, [6, Lemma 2.1, p. 24]), we have

(2.12)
n−1∑

i=0

(
d

dx
Pi(W 2

α;x)Wα(x)
)2

≤ c4

(
n

an

)3

g2
n(x), |x| ≥ ηan.

Now let

Kn(W 2
α; t, x) =

n−1∑

i=0

Pi(W 2
α; t)Pi(W 2

α; x).

Then by the Christofell-Darboux formula, we have

Kn(W 2
α; xn,j , x) =

γn−1(W 2
α)

γn(W 2
α)

Pn−1(W 2
α;xn,j)Pn(W 2

α; x)
x− xn,j

,

which implies that

(2.13) Kn(W 2
α;xn,j , xn,j+1) = 0.

By Theorem 1.1 in [9, p. 465] and Corollary 1.2 in [9, p. 466], we have

(2.14)
n−1∑

i=0

P 2
i (W 2

α;xn,j) ∼ n

an
W−2

α (xn,j)gn(xn,j)

for all n = 1, 2, . . . , and for j = 1, 2, . . . , n.
Now suppose that xn,j ≥ x ≥ xn,j+1 ≥ ηan. Then

(2.15) gn(xn,j) ≤ gn(x) ≤ gn(xn,j+1).

By (2.12), (2.14), and (2.15), we have
∣∣∣∣

d

dx
Kn(W 2

α;xn,j , x)Wα(x)
∣∣∣∣

=

∣∣∣∣∣
n−1∑

i=0

Pi(W 2
α; xn,j)

d

dx
(Pi(W 2

α;x)Wα(x))

∣∣∣∣∣

≤
(

n−1∑

i=0

P 2
i (W 2

α; xn,j)
n−1∑

i=0

(
d

dx
(Pi(W 2

α; x)Wα(x))
)2

)1/2

≤ c5

((
n

an

)4

W−2
α (xn,j)gn(xn,j)g2

n(x)

)1/2

≤ c5

(
n

an

)2

W−1
α (xn,j)g

3
2
n (xn,j+1).

(2.16)
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From (2.13), (2.14), and (2.16), we have

c6
n

an
gn(xn,j)W−1

α (xn,j)

≤ Kn(W 2
α; xn,j , xn,j)Wα(xn,j)

= Kn(W 2
α; xn,j , xn,j)Wα(xn,j)−Kn(W 2

α; xn,j , xn,j+1)Wα(xn,j+1)

=
∫ xn,j

xn,j+1

d

dx
(Kn(W 2

α; xn,j , x)Wα(x))dx

≤ c7

(
n

an

)2

W−1
α (xn,j)g

3
2
n (xn,j+1)(xn,j − xn,j+1).

(2.17)

Since gn(xn,j) ∼ gn(xn,j+1), (see, [9, (11.10), p. 521]), from (2.17), we have
for xn,j > xn,j+1 ≥ ηan,

(2.18) xn,j − xn,j+1 ≥ c8
an

n
g
− 1

2
n (xn,j+1) ≥ c9

an

n
.

The proof of (2.18) for xn,j+1 < xn,j ≤ −ηan, is similar, hence by (2.8) and
(2.18), Lemma 2.3 follows. ¤

Proof of Theorem 1.2. Let 0 < p < ∞ and let n ∈ N. Let {xn,j} be the zeros
of orthogonal polynomial Pn(W 2

α;x) and {λn,j} be the Cotes numbers for W 2
α.

By Theorem 1.1 in [9, p. 465] and Corollary 1.2 in [9, p. 466], we have for all
n ∈ N, and j = 1, 2, . . . , n,

(2.19) λn,j ≤ c
an

n

(
max

{
n−

2
3 , 1− |xn,j |

an

})−1/2

W 2
α(xn,j).

Let f ∈ GANP`n. Then by (2.19), we have for all j = 1, 2, . . . , n,

λn,jf(xn,j)W p−2
α (xn,j)

(
max

{
n−

2
3 , 1− |xn,j |

an

})1/2

≤ c
an

n
f(xn,j)W p

α(xn,j),

hence
n∑

j=1

λn,jf(xn,j)W p−2
α (xn,j)

(
max

{
n−

2
3 , 1− |xn,j |

an

})1/2

≤ c
an

n

n∑

j=1

f(xn,j)W p
α(xn,j).

(2.20)

Using Theorem 1.1 with Ψ(x) = x, we have
n∑

j=1

f(xn,j)W p
α(xn,j) ≤ c1

(
n

an
+

1
δ

) ∫ ∞

−∞
f(u)W p

α(u)du,

where
δ = min{xn,j − xn,j−1 : j = 2, 3, . . . , n} > 0.
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By Lemma 2.3,
1
δ
≤ c2

n

an
,

thus

(2.21)
n∑

j=1

f(xn,j)W p
α(xn,j) ≤ c3

n

an

∫ ∞

−∞
f(u)W p

α(u)du.

Then Theorem 1.2 follows from (2.20) and (2.21). ¤
Acknowledgments. The author thanks P. Nevai for his helpful suggestions.
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