\mathcal{N}-IDEALS OF SUBTRACTION ALGEBRAS

Young Bae Jun, Jacob Kavikumar, and Keum Sook So

Abstract

Using \mathcal{N}-structures, the notion of an \mathcal{N}-ideal in a subtraction algebra is introduced. Characterizations of an \mathcal{N}-ideal are discussed. Conditions for an \mathcal{N}-structure to be an \mathcal{N}-ideal are provided. The description of a created \mathcal{N}-ideal is established.

1. Introduction

A (crisp) set A in a universe X can be defined in the form of its characteristic function $\mu_{A}: X \rightarrow\{0,1\}$ yielding the value 1 for elements belonging to the set A and the value 0 for elements excluded from the set A. So far most of the generalization of the crisp set have been conducted on the unit interval $[0,1]$ and they are consistent with the asymmetry observation. In other words, the generalization of the crisp set to fuzzy sets relied on spreading positive information that fit the crisp point $\{1\}$ into the interval $[0,1]$. Because no negative meaning of information is suggested, we now feel a need to deal with negative information. To do so, we also feel a need to supply mathematical tool. To attain such object, Jun et al. [4] introduced a new function which is called negative-valued function, and constructed \mathcal{N}-structures. They discussed \mathcal{N} subalgebras and \mathcal{N}-ideals in BCK/BCI-algebras. Schein [6] considered systems of the form $(\Phi ; \circ, \backslash)$, where Φ is a set of functions closed under the composition "०" of functions (and hence ($\Phi ; \circ$) is a function semigroup) and the set theoretic subtraction " \backslash " (and hence $(\Phi ; \backslash)$ is a subtraction algebra in the sense of [1]). He proved that every subtraction semigroup is isomorphic to a difference semigroup of invertible functions. Zelinka [7] discussed a problem proposed by Schein concerning the structure of multiplication in a subtraction semigroup. He solved the problem for subtraction algebras of a special type, called the atomic subtraction algebras. Jun et al. [2, 3] introduced the notion of ideals in subtraction algebras and discussed characterization of ideals. Jun et al. [5] provided conditions for an ideal to be irreducible. They introduced the notion of an order system in a subtraction algebra, and investigated related properties. They provided relations between ideals and order systems, and dealt with

[^0]the concept of a fixed map in a subtraction algebra, and investigate related properties.

In this paper, we introduced the notion of a (created) \mathcal{N}-ideal of subtraction algebras, and investigate several characterizations of \mathcal{N}-ideals. We discuss how to make a created \mathcal{N}-ideal of an \mathcal{N}-structure (X, f).

2. Preliminaries

By a subtraction algebra we mean an algebra ($X ;-$) with a single binary operation "-" that satisfies the following identities: for any $x, y, z \in X$,
(S1) $x-(y-x)=x$;
(S2) $x-(x-y)=y-(y-x)$;
(S3) $(x-y)-z=(x-z)-y$.
The last identity permits us to omit parentheses in expressions of the form $(x-y)-z$. The subtraction determines an order relation on $X: a \leq b \Leftrightarrow$ $a-b=0$, where $0=a-a$ is an element that does not depend on the choice of $a \in X$. The ordered set $(X ; \leq)$ is a semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in which every interval $[0, a]$ is a Boolean algebra with respect to the induced order. Here $a \wedge b=a-(a-b)$; the complement of an element $b \in[0, a]$ is $a-b$; and if $b, c \in[0, a]$, then

$$
\begin{aligned}
b \vee c & =\left(b^{\prime} \wedge c^{\prime}\right)^{\prime}=a-((a-b) \wedge(a-c)) \\
& =a-((a-b)-((a-b)-(a-c))) .
\end{aligned}
$$

In a subtraction algebra, the following are true (see [3]):
(a1) $(x-y)-y=x-y$.
(a2) $x-0=x$ and $0-x=0$.
(a3) $(x-y)-x=0$.
(a4) $x-(x-y) \leq y$.
(a5) $(x-y)-(y-x)=x-y$.
(a6) $x-(x-(x-y))=x-y$.
(a7) $(x-y)-(z-y) \leq x-z$.
(a8) $x \leq y$ if and only if $x=y-w$ for some $w \in X$.
(a9) $x \leq y$ implies $x-z \leq y-z$ and $z-y \leq z-x$ for all $z \in X$.
(a10) $x, y \leq z$ implies $x-y=x \wedge(z-y)$.
(a11) $(x \wedge y)-(x \wedge z) \leq x \wedge(y-z)$.
Definition 2.1 ([3]). A nonempty subset A of a subtraction algebra X is called an ideal of X if it satisfies:
(b1) $a-x \in A$ for all $a \in A$ and $x \in X$.
(b2) for all $a, b \in A$, whenever $a \vee b$ exists in X then $a \vee b \in A$.
Proposition 2.2 ([3]). A nonempty subset A of a subtraction algebra X is an ideal of X if and only if it satisfies:
(b3) $0 \in A$,
(b4) $(\forall x \in X)(\forall y \in A)(x-y \in A \Rightarrow x \in A)$.

Table 1. Cayley table

-	0	a	b
0	0	0	0
a	a	0	a
b	b	b	0

Proposition 2.3 ([3]). Let X be a subtraction algebra and let $x, y \in X$. If $w \in X$ is an upper bound for x and y, then the element

$$
x \vee y:=w-((w-y)-x)
$$

is a least upper bound for x and y.

3. \mathcal{N}-ideals of subtraction algebras

Denote by $\mathcal{F}(X,[-1,0])$ the collection of functions from a set X to $[-1,0]$. We say that an element of $\mathcal{F}(X,[-1,0])$ is a negative-valued function from X to $[-1,0]$ (briefly, \mathcal{N}-function on X). By an \mathcal{N}-structure we mean an ordered pair (X, f) of X and an \mathcal{N}-function f on X. In what follows, let X denote a subtraction algebra and f an \mathcal{N}-function on X unless otherwise specified.

For any \mathcal{N}-function f on X and $t \in[-1,0)$, the set

$$
C(f ; t):=\{x \in X \mid f(x) \leq t\}
$$

is called a closed (f, t)-cut of (X, f).
Definition 3.1. By an ideal (resp. subalgebra) of X based on \mathcal{N}-function f (briefly, \mathcal{N}-ideal (resp. \mathcal{N}-subalgebra) of X), we mean an \mathcal{N}-structure (X, f) in which every nonempty closed (f, t)-cut of (X, f) is an ideal (resp. subalgebra) of X for all $t \in[-1,0)$.

Example 3.2. Let $X=\{0, a, b\}$ be a subtraction algebra with the Cayley table which is given in Table 1 (see [5]). Let (X, f) be an \mathcal{N}-structure in which f is given by

$$
f=\left(\begin{array}{ccc}
0 & a & b \\
-0.7 & -0.3 & -0.5
\end{array}\right) .
$$

It is easy to check that (X, f) is an \mathcal{N}-ideal of X.
Theorem 3.3. An \mathcal{N}-structure (X, f) is an \mathcal{N}-ideal of X if and only if it satisfies the following assertions:
(1) $(\forall x, y \in X)(f(x-y) \leq f(x))$,
(2) $(\forall x, y \in X)(\exists x \vee y \Rightarrow f(x \vee y) \leq \max \{f(x), f(y)\})$.

Proof. Assume that an \mathcal{N}-structure (X, f) satisfies two conditions (1) and (2). Let $t \in[-1,0)$ be such that $C(f ; t) \neq \emptyset$. Let $x \in X$ and $a \in C(f ; t)$. Then
$f(a) \leq t$, and so $f(a-x) \leq f(a) \leq t$ by (1), i.e., $a-x \in C(f ; t)$. Assume that $a \vee b$ exists in X for all $a, b \in C(f ; t)$. Then

$$
f(a \vee b) \leq \max \{f(a), f(b)\} \leq t
$$

by (2), and so $a \vee b \in C(f ; t)$. Therefore $C(f ; t)$ is an ideal of X, that is, (X, f) is an \mathcal{N}-ideal of X.

Conversely, suppose that (X, f) is an \mathcal{N}-ideal of X, that is, every nonempty closed (f, t)-cut of (X, f) is an ideal of X for all $t \in[-1,0)$. If there are $a, b \in X$ such that $f(a-b)>f(a)$, then $f(a-b)>t_{a} \geq f(a)$ for some $t_{a} \in[-1,0)$. Thus $a \in C\left(f ; t_{a}\right)$, but $a-b \notin C\left(f ; t_{a}\right)$. This is a contradiction, and so $f(x-y) \leq f(x)$ for all $x, y \in X$. Assume that there exist $a, b \in X$ such that $a \vee b$ exists and $f(a \vee b)>\max \{f(a), f(b)\}$. Then $f(a \vee b)>t_{0} \geq \max \{f(a), f(b)\}$ for some $t_{0} \in[-1,0)$. It follows that $a, b \in C\left(f ; t_{0}\right)$ and $a \vee b \notin C\left(f ; t_{0}\right)$ which is a contradiction. Therefore (2) is valid.

Corollary 3.4. Every \mathcal{N}-ideal (X, f) satisfies the following inequality:

$$
\begin{equation*}
(\forall x \in X)(f(0) \leq f(x)) \tag{3.1}
\end{equation*}
$$

Proof. Straightforward.
Theorem 3.5. For a fixed element $w \in X$, let $\left(X, f_{w}\right)$ be an \mathcal{N}-structure in which f_{w} is give by

$$
f_{w}(x)= \begin{cases}t_{1} & \text { if } x-w=0 \\ t_{2} & \text { otherwise }\end{cases}
$$

for all $x \in X$ and $t_{1}, t_{2} \in[-1,0)$ with $t_{1}<t_{2}$. Then $\left(X, f_{w}\right)$ is an \mathcal{N}-ideal of X.

Proof. Let $x, y \in X$. If $x-w \neq 0$, then $f_{w}(x)=t_{2} \geq f_{w}(x-y)$. If $x-w=0$, then $x-y \leq x \leq w$, i.e., $(x-y)-w=0$. Thus $f_{w}(x-y)=t_{1}=f_{w}(x)$. Now if $x-w \neq 0$ or $y-w \neq 0$, then $f_{w}(x)=t_{2}$ or $f_{w}(y)=t_{2}$. Hence

$$
f_{w}(x \vee y) \leq t_{2}=\max \left\{f_{w}(x), f_{w}(y)\right\}
$$

whenever $x \vee y$ exists in X. Assume that $x-w=0$ and $y-w=0$. Then w is an upper bound for x and y. It follows from Proposition 2.3 that $x \vee y$ exists and $x \vee y=w-((w-y)-x) \leq w$, i.e., $x \vee y-w=0$. Therefore

$$
f_{w}(x \vee y)=t_{1}=\max \left\{f_{w}(x), f_{w}(y)\right\} .
$$

Using Theorem 3.3, we conclude that $\left(X, f_{w}\right)$ is an \mathcal{N}-ideal of X.
Theorem 3.6. An \mathcal{N}-structure (X, f) is an \mathcal{N}-ideal of X if and only if it satisfies:

$$
\begin{equation*}
(\forall x, a, b \in X)(f(x-((x-a)-b)) \leq \max \{f(a), f(b)\}) \tag{3.2}
\end{equation*}
$$

Proof. Let (X, f) be an \mathcal{N}-structure satisfying (3.2). Using (a2) and (S3), we have

$$
x-y=(x-y)-(((x-y)-x)-x)
$$

for all $x, y \in X$. It follows from (3.2) that

$$
f(x-y)=f((x-y)-(((x-y)-x)-x)) \leq \max \{f(x), f(x)\}=f(x)
$$

for all $x, y \in X$. Suppose $x \vee y$ exists for $x, y \in X$. Putting $a:=x \vee y$, we have $x \vee y=a-((a-y)-x)=a-((a-x)-y)$ by Proposition 2.3 and (S3). Using (3.2) implies that

$$
f(x \vee y)=f(a-((a-x)-y)) \leq \max \{f(x), f(y)\}
$$

for all $x, y \in X$. Therefore (X, f) is an \mathcal{N}-ideal of X by Theorem 3.3.
Conversely, suppose that (X, f) is an \mathcal{N}-ideal of X. Then the nonempty closed (f, t)-cut of (X, f) is an ideal of X for all $t \in[-1,0)$. Let $\theta_{C(f ; t)}$ be a relation on X defined by

$$
(\forall x, y \in X)\left((x, y) \in \theta_{C(f ; t)} \Leftrightarrow x-y \in C(f ; t), y-x \in C(f ; t)\right)
$$

Then $\theta_{C(f ; t)}$ is a congruence relation on X. For any $a, b \in C(f ; t)$ and $x \in X$, we have $(x, x) \in \theta_{C(f ; t)},(a, 0) \in \theta_{C(f ; t)}$ and $(b, 0) \in \theta_{C(f ; t)}$. Hence

$$
(x-((x-a)-b), 0)=(x-((x-a)-b), x-((x-0)-0)) \in \theta_{C(f ; t)},
$$

and so $x-((x-a)-b) \in C(f ; t)$. It follows that

$$
f(x-((x-a)-b)) \leq \max \{f(a), f(b)\}
$$

for all $a, b, x \in X$ because if there exist $a_{0}, b_{0} \in X$ such that

$$
f\left(x-\left(\left(x-a_{0}\right)-b_{0}\right)\right)>\max \left\{f\left(a_{0}\right), f\left(b_{0}\right)\right\},
$$

then $f\left(x-\left(\left(x-a_{0}\right)-b_{0}\right)\right)>t_{0} \geq \max \left\{f\left(a_{0}\right), f\left(b_{0}\right)\right\}$ for some $t_{0} \in[-1,0)$. Thus $a_{0} \in C\left(f ; t_{0}\right)$ and $b_{0} \in C\left(f ; t_{0}\right)$, but $x-\left(\left(x-a_{0}\right)-b_{0}\right) \notin C\left(f ; t_{0}\right)$. This is a contradiction.

Theorem 3.7. An \mathcal{N}-structure (X, f) is an \mathcal{N}-ideal of X if and only if it satisfies the condition (3.1) and

$$
\begin{equation*}
(\forall x, y, z \in X)(f(x-z) \leq \max \{f((x-y)-z), f(y)\}) \tag{3.3}
\end{equation*}
$$

Proof. Assume that (X, f) is an \mathcal{N}-ideal of X. Then the condition (3.1) is valid by Corollary 3.4. If we put $x=x-z$ in (a3), then $((x-z)-y)-(x-z)=0$, i.e., $(x-z)-y \leq x-z$. If we put $x=y$ and $y=x-z$ in (a4), then $y-(y-(x-z)) \leq x-z$. Hence $x-z$ is an upper bound for $(x-z)-y$ and
$y-(y-(x-z))$. It follows from Proposition 2.3, (S2), (S3) and (a2) that

$$
\begin{aligned}
& ((x-y)-z) \vee y=((x-y)-z) \vee(y-0) \\
= & ((x-y)-z) \vee(y-(y-y)) \\
= & ((x-y)-z) \vee(y-(y-(x-z))) \\
= & ((x-z)-y) \vee(y-(y-(x-z))) \\
= & (x-z)-(((x-z)-(y-(y-(x-z))))-((x-z)-y)) \\
= & (x-z)-(((x-z)-((x-z)-y))-(y-(y-(x-z)))) \\
= & (x-z)-((y-(y-(x-z)))-(y-(y-(x-z)))) \\
= & (x-z)-0=x-z
\end{aligned}
$$

so from Theorem 3.3(2) that

$$
f(x-z)=f(((x-y)-z) \vee y) \leq \max \{f((x-y)-z), f(y)\}
$$

for all $x, y \in X$.
Conversely, let (X, f) be an \mathcal{N}-structure satisfying two conditions (3.1) and (3.3). Let $t \in[-1,0)$ be such that $C(f ; t) \neq \emptyset$. Obviously, $0 \in C(f ; t)$ by the condition (3.1). Let $x \in X$ and $a \in C(f ; t)$ be such that $x-a \in C(f ; t)$. Then $f(a) \leq t$ and $f(x-a) \leq t$. It follows from (3.3) and (a2) that

$$
\begin{aligned}
f(x) & =f(x-0) \leq \max \{f((x-a)-0), f(a)\} \\
& =\max \{f(x-a), f(a)\} \leq t
\end{aligned}
$$

so that $x \in C(f ; t)$. Hence $C(f ; t)$ is an ideal of X for all $t \in[-1,0)$ by Proposition 2.2, and so (X, f) is an \mathcal{N}-ideal of X.

Corollary 3.8. Every \mathcal{N}-ideal (X, f) satisfies:

$$
(\forall x, y \in X)(x \leq y \Longrightarrow f(x) \leq f(y))
$$

Proof. Let $x, y \in X$ be such that $x \leq y$. Then $x-y=0$, and so

$$
f(x)=f(x-0) \leq \max \{f((x-y)-0), f(y)\}=\max \{f(0), f(y)\}=f(y)
$$

by using (a2), (3.1) and (3.3). This completes the proof.
Theorem 3.9. An \mathcal{N}-structure (X, f) is an \mathcal{N}-ideal of X if and only if it satisfies the condition (3.1) and

$$
\begin{equation*}
(\forall x, y \in X)(f(x) \leq \max \{f(x-y), f(y)\}) \tag{3.4}
\end{equation*}
$$

Proof. Assume that (X, f) is an \mathcal{N}-ideal of X. Then the condition (3.1) is valid by Corollary 3.4, and the condition (3.4) is by taking $z=0$ in (3.3) and using (a2).

Conversely, let (X, f) be an \mathcal{N}-structure satisfying two conditions (3.1) and (3.4). Since

$$
(x-((x-a)-b))-b=(x-b)-((x-a)-b) \leq x-(x-a) \leq a,
$$

that is, $((x-((x-a)-b))-b)-a=0$ for all $x, a, b \in X$, it follows from (3.1) and (3.4) that

$$
\begin{aligned}
& f(x-((x-a)-b)) \\
\leq & \max \{f((x-((x-a)-b))-b), f(b)\} \\
\leq & \max \{\max \{f(((x-((x-a)-b))-b)-a), f(a)\}, f(b)\} \\
= & \max \{\max \{f(0), f(a)\}, f(b)\} \\
= & \max \{f(a), f(b)\}
\end{aligned}
$$

for all $x, a, b \in X$. Therefore (X, f) is an \mathcal{N}-ideal of X by Theorem 3.6.
Theorem 3.10. For fixed elements $a, b \in X$, let $\left(X, f_{a}^{b}\right)$ be an \mathcal{N}-structure in which f_{a}^{b} is give by

$$
f_{a}^{b}(x)= \begin{cases}t_{1} & \text { if }(x-a)-b=0 \\ t_{2} & \text { otherwise }\end{cases}
$$

for all $x \in X$ and $t_{1}, t_{2} \in[-1,0)$ with $t_{1}<t_{2}$. Then $\left(X, f_{a}^{b}\right)$ is an \mathcal{N}-ideal of X.
Proof. Since $(0-a)-b=0$, we have $f_{a}^{b}(0)=t_{1} \leq f_{a}^{b}(x)$ for all $x \in X$. Let $x, y \in X$. If $(x-a)-b=0$, then $f_{a}^{b}(x)=t_{1} \leq \max \left\{f_{a}^{b}(x-y), f_{a}^{b}(y)\right\}$. Suppose that $(x-a)-b \neq 0$. If $(y-a)-b=0$ and $((x-y)-a)-b=0$, then

$$
\begin{aligned}
(x-a)-b & =((x-a)-b)-0 \\
& =((x-a)-b)-((y-a)-b) \\
& =((x-a)-(y-a))-b \\
& =((x-y)-a)-b=0,
\end{aligned}
$$

a contradiction. Hence $(y-a)-b \neq 0$ or $((x-y)-a)-b \neq 0$, and thus $f_{a}^{b}(y)=t_{2}$ or $f_{a}^{b}(x-y)=t_{2}$. It follows that

$$
f_{a}^{b}(x)=t_{2}=\max \left\{f_{a}^{b}(x-y), f_{a}^{b}(y)\right\}
$$

Hence, by Theorem 3.9, $\left(X, f_{a}^{b}\right)$ is an \mathcal{N}-ideal of X.
Theorem 3.11. For an ideal A of X and a fixed element $w \in X$, let $\left(X, f_{A}^{w}\right)$ be an \mathcal{N}-structure in which f_{A}^{w} is give by

$$
f_{A}^{w}(x)= \begin{cases}t_{1} & \text { if } x-w \in A \\ t_{2} & \text { otherwise }\end{cases}
$$

for all $x \in X$ and $t_{1}, t_{2} \in[-1,0)$ with $t_{1}<t_{2}$. Then $\left(X, f_{A}^{w}\right)$ is an \mathcal{N}-ideal of X.

Proof. Since $0-w=0 \in A$, we get $f_{A}^{w}(0)=t_{1} \leq f_{A}^{w}(x)$ for all $x \in X$. Let $x, y \in X$. If $x-w \in A$, then $f_{A}^{w}(x)=t_{1} \leq \max \left\{f_{A}^{w}(x-y), f_{A}^{w}(y)\right\}$. Suppose that $x-w \notin A$. If $y-w \in A$ and $(x-y)-w \in A$, then

$$
(x-w)-(y-w)=(x-y)-w \in A .
$$

Since A is an ideal and $y-w \in A$, it follows from (b4) that $x-w \in A$ which is a contradiction. Therefore $y-w \notin A$ or $(x-y)-w \notin A$, and so $f_{A}^{w}(y)=t_{2}$ or $f_{A}^{w}(x-y)=t_{2}$. Thus

$$
f_{A}^{w}(x)=t_{2}=\max \left\{f_{A}^{w}(x-y), f_{A}^{w}(y)\right\}
$$

Using Theorem 3.9, we know that $\left(X, f_{A}^{w}\right)$ is an \mathcal{N}-ideal of X.
Theorem 3.12. An \mathcal{N}-structure (X, f) is an \mathcal{N}-ideal of X if and only if it satisfies:
(3.5) $\quad(\forall a, b, x \in X)(x-a \leq b \Longrightarrow f(x) \leq \max \{f(a), f(b)\})$.

Proof. Assume that (X, f) is an \mathcal{N}-ideal of X. Let $a, b, x \in X$ be such that $x-a \leq b$. Then $(x-a)-b=0$, and so

$$
\begin{aligned}
f(x) & \leq \max \{f(x-a), f(a)\} \\
& \leq \max \{\max \{f((x-a)-b), f(b)\}, f(a)\} \\
& =\max \{\max \{f(0), f(b)\}, f(a)\} \\
& =\max \{f(a), f(b)\}
\end{aligned}
$$

by (3.4) and (3.1).
Conversely, let (X, f) be an \mathcal{N}-structure satisfying the condition (3.5). Since $0-x \leq x$ for all $x \in X$, it follows from (3.5) that

$$
f(0) \leq \max \{f(x), f(x)\}=f(x)
$$

for all $x \in X$. Note that $x-(x-y) \leq y$ for all $x, y \in X$. Using (3.5), we have $f(x) \leq \max \{f(x-y), f(y)\}$ for all $x, y \in X$. Hence (X, f) is an \mathcal{N}-ideal of X by Theorem 3.9.

Theorem 3.13. An \mathcal{N}-structure (X, f) is an \mathcal{N}-ideal (X, f) of X if and only if it satisfies:

$$
\begin{equation*}
f(x) \leq \max \left\{f\left(a_{i}\right) \mid i=1,2, \ldots, n\right\} \tag{3.6}
\end{equation*}
$$

for all $x, a_{1}, a_{2}, \ldots, a_{n} \in X$ with $\left(\cdots\left(\left(x-a_{1}\right)-a_{2}\right)-\cdots\right)-a_{n}=0$.
Proof. Assume that (X, f) is an \mathcal{N}-ideal of X. If $x-a=0$ for any $x, a \in X$, then $f(x) \leq f(a)$ by Corollary 3.8. Let $a, b, x \in X$ be such that $(x-a)-b=0$. Then $f(x) \leq \max \{f(a), f(b)\}$ by Theorem 3.12. Now let $x, a_{1}, a_{2}, \ldots, a_{n} \in X$ be such that

$$
\left(\cdots\left(\left(x-a_{1}\right)-a_{2}\right)-\cdots\right)-a_{n}=0 .
$$

By induction on n, we conclude that $f(x) \leq \max \left\{f\left(a_{i}\right) \mid i=1,2, \ldots, n\right\}$.
Conversely, let (X, f) be an \mathcal{N}-structure in which (3.6) is valid for all $x, a_{1}, a_{2}, \ldots, a_{n} \in X$ with $\left(\cdots\left(\left(x-a_{1}\right)-a_{2}\right)-\cdots\right)-a_{n}=0$. Then

$$
\begin{equation*}
f(x) \leq \max \{f(y), f(z)\} \tag{3.7}
\end{equation*}
$$

for all $x, y, z \in X$ with $(x-y)-z=0$. Since $(0-x)-x=0$ for all $x \in X$, it follows from (3.7) that $f(0) \leq \max \{f(x), f(x)\}=f(x)$. Note that $(x-(x-$
$y))-y=0$ for all $x, y \in X$. Using (3.7), we have $f(x) \leq \max \{f(x-y), f(y)\}$ for all $x, y \in X$. Therefore (X, f) is an \mathcal{N}-ideal of X by Theorem 3.9.

Proposition 3.14. In an \mathcal{N}-ideal (X, f) of X, the following assertions are equivalent:
(1) $(\forall x, y \in X)(f(x-y) \leq f((x-y)-y))$.
(2) $(\forall x, y, z \in X)(f((x-z)-(y-z)) \leq f((x-y)-z))$.

Proof. Assume that (1) is valid and let $x, y, z \in X$. Since

$$
((x-(y-z))-z)-z=((x-z)-(y-z))-z \leq(x-y)-z,
$$

it follows from Corollary 3.8 that $f(((x-(y-z))-z)-z) \leq f((x-y)-z)$ so from (S3) and (1) that

$$
\begin{aligned}
f((x-z)-(y-z)) & =f((x-(y-z))-z) \\
& \leq f(((x-(y-z))-z)-z) \\
& \leq f((x-y)-z)
\end{aligned}
$$

Conversely, suppose that (2) is valid. If we use z instead of y in (2), then

$$
f(x-z)=f((x-z)-0)=f((x-z)-(z-z)) \leq f((x-z)-z)
$$

for all $x, z \in X$ by using (a2). This proves (1).
For any element w of X, we consider the set

$$
X_{w}:=\{x \in X \mid f(x) \leq f(w)\} .
$$

Obviously, $w \in X_{w}$, and so X_{w} is a non-empty subset of X.
Theorem 3.15. Let w be an element of X. If (X, f) is an \mathcal{N}-ideal of X, then the set X_{w} is an ideal of X.

Proof. Obviously, $0 \in X_{w}$ by (3.1). Let $x, y \in X$ be such that $x-y \in X_{w}$ and $y \in X_{w}$. Then $f(x-y) \leq f(w)$ and $f(y) \leq f(w)$. Since (X, f) is an \mathcal{N}-ideal of X, it follows from (3.4) that

$$
f(x) \leq \max \{f(x-y), f(y)\} \leq f(w)
$$

so that $x \in X_{w}$. Hence X_{w} is an ideal of X.
Theorem 3.16. Let w be an element of X and let (X, f) be an \mathcal{N}-structure of X and f. Then
(1) If X_{w} is an ideal of X, then (X, f) satisfies the following assertion:
(3.8) $(\forall x, y, z \in X)(f(x) \geq \max \{f(y-z), f(z)\} \Rightarrow f(x) \geq f(y))$.
(2) If (X, f) satisfies (3.1) and (3.8), then X_{w} is an ideal of X.

Proof. (1) Assume that X_{w} is an ideal of X for each $w \in X$. Let $x, y, z \in X$ be such that $f(x) \geq \max \{f(y-z), f(z)\}$. Then $y-z \in X_{x}$ and $z \in X_{x}$. Since X_{x} is an ideal of X, it follows that $y \in X_{x}$, that is, $f(y) \leq f(x)$.
(2) Suppose that (X, f) satisfies (3.1) and (3.8). For each $w \in X$, let $x, y \in X$ be such that $x-y \in X_{w}$ and $y \in X_{w}$. Then $f(x-y) \leq f(w)$ and $f(y) \leq f(w)$, which imply that $\max \{f(x-y), f(y)\} \leq f(w)$. Using (3.8), we have $f(w) \geq f(x)$ and so $x \in X_{w}$. Obviously $0 \in X_{w}$. Therefore X_{w} is an ideal of X.

Let (X, f) and (X, g) be two \mathcal{N}-structures. We say that (X, f) is a retrenchment of (X, g) (see [4]) if $f(x) \leq g(x)$ for all $x \in X$.

Definition 3.17. Let (X, f) be an \mathcal{N}-structure. An \mathcal{N}-structure (X, g) is called a created \mathcal{N}-ideal of (X, f) if it satisfies:
(i) (X, g) is an \mathcal{N}-ideal of X.
(ii) (X, g) is a retrenchment of (X, f).
(iii) For any \mathcal{N}-ideal (X, h) of X, if (X, h) is a retrenchment of (X, f), then (X, h) is a retrenchment of (X, g).

The created \mathcal{N}-ideal of (X, f) will be denoted by $(X,[f])$. Note that the created \mathcal{N}-ideal of (X, f) is the greatest \mathcal{N}-ideal in X which is a retrenchment of (X, f). We discuss how to make a created \mathcal{N}-ideal of an \mathcal{N}-structure (X, f).
Theorem 3.18. For any \mathcal{N}-structure (X, f), the created \mathcal{N}-ideal $(X,[f])$ of (X, f) is described as follows:

$$
[f](x)=\inf \left\{\begin{array}{l|c}
\max \left\{f\left(a_{i}\right) \mid i=1,2, \ldots n\right\} & \left(\cdots\left(\left(x-a_{1}\right)-a_{2}\right)-\right. \\
\cdots)-a_{n}=0
\end{array}\right\} .
$$

Proof. Let (X, g) be an \mathcal{N}-structure in which g is defined by

$$
g(x)=\inf \left\{\begin{array}{l|c}
\max \left\{f\left(a_{i}\right) \mid i=1,2, \ldots n\right\} & \left(\cdots\left(\left(x-a_{1}\right)-a_{2}\right)-\right. \\
\cdots)-a_{n}=0
\end{array}\right\} .
$$

Let $x, a, b \in X$ be such that

$$
\begin{equation*}
(x-a)-b=0 . \tag{3.9}
\end{equation*}
$$

For any $\varepsilon>0$, there exist $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{m} \in X$ such that

$$
\begin{align*}
& \left(\cdots\left(\left(a-a_{1}\right)-a_{2}\right)-\cdots\right)-a_{n}=0 \\
& \left(\cdots\left(\left(b-b_{1}\right)-b_{2}\right)-\cdots\right)-b_{m}=0 \tag{3.10}
\end{align*}
$$

and

$$
\begin{align*}
& g(a)>\max \left\{f\left(a_{i}\right) \mid i=1,2, \ldots, n\right\}-\varepsilon \\
& g(b)>\max \left\{f\left(b_{j}\right) \mid j=1,2, \ldots, m\right\}-\varepsilon \tag{3.11}
\end{align*}
$$

Using (3.9) and (3.10), we have

$$
\left.\left(\cdots\left(\left(\left((\cdots)\left(\left(x-a_{1}\right)-a_{2}\right)-\cdots\right)-a_{n}\right)-b_{1}\right)-b_{2}\right)-\cdots\right)-b_{m}=0 .
$$

Applying the definition of g and using (3.11), we have

$$
\begin{aligned}
g(x) & \leq \max \left\{f\left(a_{1}\right), f\left(a_{2}\right), \ldots, f\left(a_{n}\right), f\left(b_{1}\right), f\left(b_{2}\right), \ldots, f\left(b_{m}\right)\right\} \\
& <\max \{g(a)+\varepsilon, g(b)+\varepsilon\} \\
& =\max \{g(a), g(b)\}+\varepsilon .
\end{aligned}
$$

Since ε is arbitrary, it follows that $g(x) \leq \max \{g(a), g(b)\}$ so from Theorem 3.12 that (X, g) is an \mathcal{N}-ideal in X. Now since $x-x=0$ for all $x \in X$, we obtain $g(x) \leq f(x)$ for all $x \in X$, and so (X, g) is a retrenchment of (X, f). Let (X, h) be an \mathcal{N}-ideal in X which is a retrenchment of (X, f). For any $x \in X$, we have

$$
\left.\begin{array}{rl}
g(x) & =\inf \left\{\max \left\{f\left(a_{i}\right) \mid i=1,2, \cdots n\right\}\right.
\end{array} \begin{array}{c|c}
\left(\cdots\left(\left(x-a_{1}\right)-a_{2}\right)-\right. \\
\cdots)-a_{n}=0
\end{array}\right\}, \begin{array}{c|c}
\\
\geq \inf \left\{\max \left\{h\left(a_{i}\right) \mid i=1,2, \cdots n\right\}\right. & \left(\left(x-a_{1}\right)-a_{2}\right)- \\
\geq \inf \{h(x)\}=h(x),
\end{array}
$$

and so (X, h) is a retrenchment of (X, g). Therefore (X, g) is a created \mathcal{N} ideal of (X, f). Since $(X,[f])$ is greatest, we have $g=[f]$. This completes the proof.

References

[1] J. C. Abbott, Sets, Lattices and Boolean Algebras, Allyn and Bacon, Inc., Boston, Mass. 1969.
[2] Y. B. Jun and H. S. Kim, On ideals in subtraction algebras, Sci. Math. Jpn. 65 (2007), no. 1, 129-134.
[3] Y. B. Jun, H. S. Kim, and E. H. Roh, Ideal theory of subtraction algebras, Sci. Math. Jpn. 61 (2005), no. 3, 459-464.
[4] Y. B. Jun, K. J. Lee, and S. Z. Song, \mathcal{N}-ideals of BCK/BCI-algebras, J. Chungcheong Math. Soc. 22 (2009), 417-437.
[5] Y. B. Jun, C. H. Park, and E. H. Roh, Order systems, ideals and right fixed maps of subtraction algebras, Commun. Korean Math. Soc. 23 (2008), no. 1, 1-10.
[6] B. M. Schein, Difference semigroups, Comm. Algebra 20 (1992), no. 8, 2153-2169.
[7] B. Zelinka, Subtraction semigroups, Math. Bohem. 120 (1995), no. 4, 445-447.

Young Bae Jun
Department of Mathematics Education (and Rins)
Gyeongsang National University
Chinju 660-701, Korea
E-mail address: skywine@gmail.com
Jacob Kavikumar
Centre for Science Studies
Universiti Tun Hussein Onn Malaysia
86400 Batu Pahat, Johor, Malaysia
E-mail address: kaviphd@gmail.com

Keum Sook So
Department of Mathematics
Hallym University
Chuncheon 200-702, Korea
E-mail address: ksso@hallym.ac.kr

[^0]: Received October 9, 2009.
 2000 Mathematics Subject Classification. 06F35, 03G25.
 Key words and phrases. subtraction algebra, \mathcal{N}-ideal, \mathcal{N}-subalgebra, created \mathcal{N}-ideal.

