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N-IDEALS OF SUBTRACTION ALGEBRAS

YOUNG BAE JUN, JACOB KAVIKUMAR, AND KEUM SOOK SO

ABSTRACT. Using N -structures, the notion of an N-ideal in a subtrac-
tion algebra is introduced. Characterizations of an N -ideal are discussed.
Conditions for an N-structure to be an AN-ideal are provided. The de-
scription of a created N-ideal is established.

1. Introduction

A (crisp) set A in a universe X can be defined in the form of its characteris-
tic function p4 : X — {0,1} yielding the value 1 for elements belonging to the
set A and the value 0 for elements excluded from the set A. So far most of the
generalization of the crisp set have been conducted on the unit interval [0, 1]
and they are consistent with the asymmetry observation. In other words, the
generalization of the crisp set to fuzzy sets relied on spreading positive infor-
mation that fit the crisp point {1} into the interval [0, 1]. Because no negative
meaning of information is suggested, we now feel a need to deal with negative
information. To do so, we also feel a need to supply mathematical tool. To
attain such object, Jun et al. [4] introduced a new function which is called
negative-valued function, and constructed N -structures. They discussed N/-
subalgebras and N-ideals in BCK/BCl-algebras. Schein [6] considered systems
of the form (®;o0,\), where ® is a set of functions closed under the composition
“o” of functions (and hence (®;0) is a function semigroup) and the set theo-
retic subtraction “\” (and hence (®;)\) is a subtraction algebra in the sense of
[1]). He proved that every subtraction semigroup is isomorphic to a difference
semigroup of invertible functions. Zelinka [7] discussed a problem proposed by
Schein concerning the structure of multiplication in a subtraction semigroup.
He solved the problem for subtraction algebras of a special type, called the
atomic subtraction algebras. Jun et al. [2, 3] introduced the notion of ideals
in subtraction algebras and discussed characterization of ideals. Jun et al. [5]
provided conditions for an ideal to be irreducible. They introduced the notion
of an order system in a subtraction algebra, and investigated related proper-
ties. They provided relations between ideals and order systems, and dealt with
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the concept of a fixed map in a subtraction algebra, and investigate related
properties.

In this paper, we introduced the notion of a (created) N-ideal of subtraction
algebras, and investigate several characterizations of A-ideals. We discuss how
to make a created N-ideal of an N-structure (X, f).

2. Preliminaries

By a subtraction algebra we mean an algebra (X;—) with a single binary
operation “—” that satisfies the following identities: for any x,y,z € X,

(S1) z—(y— =) = =;

(52) z—(z —y) =y — (y — x);

(S83) (z—y)—z=(x—2)—y
The last identity permits us to omit parentheses in expressions of the form
(x — y) — z. The subtraction determines an order relation on X: a < b &
a —b =0, where 0 = a — a is an element that does not depend on the choice
of a € X. The ordered set (X; <) is a semi-Boolean algebra in the sense of [1],
that is, it is a meet semilattice with zero 0 in which every interval [0, qa] is a
Boolean algebra with respect to the induced order. Here a Ab = a — (a — b);
the complement of an element b € [0, a] is @ — b; and if b, ¢ € [0, a], then

bve=0W'Ad)Y =a—((a—b)A(a—rc))

=a—((a=b)—((a=b)—(a—0)).

In a subtraction algebra, the following are true (see [3]):
al) (z—y)—y=z—y.

(

(a2) x—0=2zand 0 —z =0.

(a3) (z—y)—w=

(ad) z — (z —y) <.

(a5) (x—y)—(y—a)=z—y.

(26) 7 — (¢ — (z — ) = — y.

@7) (z—y) - (z-y)<z-—=

(a8) = <y if and only if x = y — w for some w € X.

(a9) z <y impliessz —z2<y—zand z—y < z—z for all z € X.
)

(all) (zAy)—(zAhz)<zA(y—2).
Definition 2.1 ([3]). A nonempty subset A of a subtraction algebra X is called
an ideal of X if it satisfies:

(bl) a—x € Aforalla € A and z € X.
(b2) for all a,b € A, whenever a V b exists in X then a Vb € A.

Proposition 2.2 ([3]). A nonempty subset A of a subtraction algebra X is an
ideal of X if and only if it satisfies:

(b3) 0 € A,

(bd) Vze X)(VyecA)(z—yec A = zcA).
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TABLE 1. Cayley table

> O

e oo
SO O 2
o O

Proposition 2.3 ([3]). Let X be a subtraction algebra and let x,y € X. If
w € X s an upper bound for x and y, then the element
eVy=w-((w—-y)—x)

is a least upper bound for x and y.

3. N-ideals of subtraction algebras

Denote by F(X,[—1,0]) the collection of functions from a set X to [—1,0].
We say that an element of F(X,[—1,0]) is a negative-valued function from X
o [—1,0] (briefly, N'-function on X). By an N -structure we mean an ordered
pair (X, f) of X and an N-function f on X. In what follows, let X denote a
subtraction algebra and f an N -function on X unless otherwise specified.

For any N-function f on X and ¢ € [—1,0), the set

Clf;t) ={zeX| f(z)<t}
is called a closed (f,t)-cut of (X, f).
Definition 3.1. By an ideal (resp. subalgebra) of X based on N -function f
(briefly, N-ideal (resp. N -subalgebra) of X), we mean an N-structure (X, f) in

which every nonempty closed (f,t)-cut of (X, f) is an ideal (resp. subalgebra)
of X for all t € [-1,0).

Example 3.2. Let X = {0,a,b} be a subtraction algebra with the Cayley
table which is given in Table 1 (see [5]). Let (X, f) be an N-structure in which

f is given by
0 a b
f= (0.7 —-0.3 0.5) '

It is easy to check that (X, f) is an N-ideal of X.

Theorem 3.3. An N -structure (X, f) is an N-ideal of X if and only if it
satisfies the following assertions:

(1) (Vo,y € X) (f(z —y) < f(2)),
(2) (Va,ye X) BzVy = flzVy) <max{f(z), f(y)})

Proof. Assume that an N-structure (X, f) satisfies two conditions (1) and (2).
Let t € [—1,0) be such that C(f;t) # 0. Let + € X and a € C(f;t). Then
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fla) <t,and so f(a—z) < f(a) <t by (1), ie,a—x € C(f;t). Assume that
a Vb exists in X for all a,b € C(f;t). Then

Fla v b) < max{f(a), f(b)} <t

by (2), and so a Vb € C(f;t). Therefore C(f;t) is an ideal of X, that is, (X f)
is an AM-ideal of X.

Conversely, suppose that (X, f) is an M-ideal of X, that is, every nonempty
closed (f,t)-cut of (X, f) is an ideal of X for all ¢ € [—1,0). If there are a,b € X
such that f(a—b) > f(a), then f(a—b) > t, > f(a) for some t, € [—1,0). Thus
a € C(f;ty), but a—b ¢ C(f;t,). Thisis a contradiction, and so f(z—y) < f(z)
for all z,y € X. Assume that there exist a,b € X such that a V b exists and
flaVvb) > max{f(a), f(b)}. Then f(aVb) > ty > max{f(a), f(b)} for some
to € [-1,0). It follows that a,b € C(f;tp) and a Vb ¢ C(f;t9) which is a
contradiction. Therefore (2) is valid. O

Corollary 3.4. Every N-ideal (X, f) satisfies the following inequality:

(3.1) (Ve € X) (f(0) < f(=)).

Proof. Straightforward. (I
Theorem 3.5. For a fized element w € X, let (X, fy,) be an N -structure in
which f,, is give by

|t if z—w=0,
fulw) = { ty otherwise

for all x € X and t1,t2 € [—1,0) with ¢1 < ta. Then (X, fy) is an N -ideal of
X.

Proof. Let z,y € X. If x —w # 0, then f,(z) =t2 > fu(z —y). fxz—w =0,
then z —y < x <w, ie., (x —y) —w = 0. Thus f,(x —y) =t1 = fu(zr). Now
ifx—w#0ory—w##0, then f,(x) =t2 or fi,(y) = t2. Hence

fuw(zVy) <ty =max{fu(z), fu(y)}

whenever z V y exists in X. Assume that x —w =0 and y — w = 0. Then w is
an upper bound for z and y. It follows from Proposition 2.3 that = V y exists
andzVy=w— ((w—y)—z) <w,ie, zVy—w=0. Therefore

fw(m \ y) =t = max{fw(gc), fw(y)}
Using Theorem 3.3, we conclude that (X, f,,) is an N-ideal of X. O

Theorem 3.6. An N -structure (X, f) is an N-ideal of X if and only if it
satisfies:

32)  (Vz,0,0 € X) (f(z = ((z — a) = b)) <max{f(a), f(b)})-
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Proof. Let (X, f) be an N-structure satisfying (3.2). Using (a2) and (S3), we
have

r—y=(r—y) - (((z—y)—z)—=)
for all z,y € X. It follows from (3.2) that
flz—y)=f((@—-y) - (¢ —y) —2) — 2)) <max{f(z), f(x)} = f(z)

for all z,y € X. Suppose x V y exists for xz,y € X. Putting a := z V y, we have
zVy=a—((a—y)—x) =a— ((a—x)—y) by Proposition 2.3 and (S3). Using
(3.2) implies that

fxvy) = fla—((a—2)—y)) <max{f(z), f(y)}

for all z,y € X. Therefore (X, f) is an N-ideal of X by Theorem 3.3.

Conversely, suppose that (X, f) is an N-ideal of X. Then the nonempty
closed (f,t)-cut of (X, f) is an ideal of X for all ¢ € [~1,0). Let Oy be a
relation on X defined by

(Vo,y € X) ((z,9) € bc(pyy & ©—y e C(fit), y—z e C(fit)).

Then 0¢ (s, is a congruence relation on X. For any a,b € C(f;t) and x € X,
we have (z,7) € O (1), (a,0) € Oc(p) and (b,0) € O¢ 5,1y Hence

(z = ((x—a)=b),0) = (z = ((z —a) = b),z = ((x = 0) = 0)) € Oc(s3),
and so @ — ((z — a) — b) € C(f;1). Tt follows that
f(@ = ((x — a) = b)) < max{f(a), f(b)}
for all a,b,x € X because if there exist ag, by € X such that
f(z = ((z = ao) — bo)) > max{f(ao), f(bo)},

then f(x — ((x — ag) — bo)) > to > max{f(ap), f(bo)} for some ¢ty € [-1,0).
Thus ag € C(f;t0) and by € C(f;to), but x — ((x — ag) — bo) ¢ C(f;t0). This
is a contradiction. (]

Theorem 3.7. An N -structure (X, f) is an N-ideal of X if and only if it
satisfies the condition (3.1) and

33)  (Vo,y,z € X) (f(z - 2) <max{f((x —y) - 2), [(y)})-

Proof. Assume that (X, f) is an A-ideal of X. Then the condition (3.1) is valid
by Corollary 3.4. If we put x = 2 — z in (a3), then ((x —2) —y) — (x — 2) =0,
ie, (t—2)—y<z—z Ifweput 2 =y and y = = — z in (ad), then
y—(y—(x—2)) <z —z Hence z — z is an upper bound for (z — z) — y and
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(
=(@-y)-2)Vy—(y—v)
=((z-y)—2)Vy—(y—(z—2))
=(@—-2)—y)Vy—(y—(r-2)
=@-2)-(z-2)—(y—(y—(—2))) — (z —2) —y))
=@-2)-(((z—2)—((z=2)-y) —(y—(y—(z—2))))
=@-2)-(y-W—(2-2)) - - (y—(r-2))))
=r—2—-0=2z—z2

so from Theorem 3.3(2) that

fle=2)=f(((z —y) = 2) Vy) < max{f((z —y) — 2), f(y)}
for all z,y € X.

Conversely, let (X, f) be an N -structure satisfying two conditions (3.1) and
(3.3). Let t € [-1,0) be such that C(f;t) # (. Obviously, 0 € C(f;t) by the
condition (3.1). Let x € X and a € C(f;t) be such that x —a € C(f;t). Then
f(a) <t and f(x —a) <t. It follows from (3.3) and (a2) that

f(x) = f(z = 0) < max{f((z —a) - 0), f(a)}
= max{f(z —a), f(a)} <t

so that € C(f;t). Hence C(f;t) is an ideal of X for all ¢ € [—1,0) by
Proposition 2.2, and so (X, f) is an N-ideal of X. O

Corollary 3.8. Every N-ideal (X, f) satisfies:
(Vo,y e X) (x <y = flz) < fy)).
Proof. Let x,y € X be such that x < y. Then z — y = 0, and so

f() = f(z = 0) < max{f((x —y) - 0), f(y)} = max{f(0), f(y)} = f(y)
by using (a2), (3.1) and (3.3). This completes the proof. O
Theorem 3.9. An N -structure (X, f) is an N-ideal of X if and only if it
satisfies the condition (3.1) and
(3.4) (Vo,y € X) (f(z) < max{f(z —y), f(y)}).

Proof. Assume that (X, f) is an M-ideal of X. Then the condition (3.1) is valid
by Corollary 3.4, and the condition (3.4) is by taking z = 0 in (3.3) and using
(a2).

Conversely, let (X, f) be an N-structure satisfying two conditions (3.1) and
(3.4). Since

(¢ ((—a)—b)—b=(z—b) (& —a) - V) <z—(z-a) <a,
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that is, ((z — ((z —a) — b)) = b) —a = 0 for all z,a,b € X, it follows from (3.1)
and (3.4) that

flz=((x —a) =)

max{f((z — ((z —a) — b)) —b), f(b)}

max{max{f(((z — ((x —a) = b)) = b) —a), f(a)}, f(b)}

= max{max{f(0), f(a)}, f(b)}

max{f(a), f(b)}

for all z,a,b € X. Therefore (X, f) is an N-ideal of X by Theorem 3.6. O

IAIA

Theorem 3.10. For fized elements a,b € X, let (X, f%) be an N -structure in
which f° is give by

b,y i if (x—a)—b=0,
falz) = { ty  otherwise

for all z € X and ty,ty € [~1,0) with t; < ty. Then (X, f°) is an N -ideal of
X.

Proof. Since (0 —a) — b = 0, we have f(0) = t; < f%(x) for all z € X. Let
v,y € X. If (x—a) —b=0, then f(z) =t; < max{f’(x —y), f’(y)}. Suppose
that (z —a) —b#0.If (y —a) —b=0and ((x —y) —a) —b=0, then

(@—a)~b=(—a)~b) -0
= (@-a) - -(y-a)-b)
= (@=a) = (=) ~b
= (-9 -a)-b=0,

a contradiction. Hence (y —a) —b # 0 or ((z —y) —a) —b # 0, and thus
fo(y) =ty or f2(x —y) = to. It follows that

fa(@) =ty = max{fs (« —y), f2(y)}.
Hence, by Theorem 3.9, (X, f?) is an N-ideal of X. O

Theorem 3.11. For an ideal A of X and a fized element w € X, let (X, fY)
be an N -structure in which ¥ is give by

wi ) t1 if x—weA,
fi(z) = { ty otherwise

for all z € X and t1,t2 € [—1,0) with t; < ta. Then (X, f¥) is an N-ideal of
X.

Proof. Since 0 —w = 0 € A, we get f¥(0) = t1 < fY(z) for all x € X. Let
z,y € X. If x —w € A, then f{(x) = t; < max{fy(z —vy), f{(y)}. Suppose
that t —w ¢ A. If y —w € A and (z —y) —w € A, then

(@-—w)—(y-—w)=(@-y)-—weA
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Since A is an ideal and y — w € A, it follows from (b4) that x — w € A which
is a contradiction. Therefore y —w ¢ A or (z —y) —w ¢ A, and so ¥ (y) = t2
or f¥(z —y) = t2. Thus
fi(x) =tz = max{f§ (z — ), f4 (v)}.
Using Theorem 3.9, we know that (X, f¥) is an N-ideal of X. O
Theorem 3.12. An N -structure (X, f) is an N-ideal of X if and only if it
satisfies:
(35) (Va,bxeX)(x—a<b = f(r) <max{f(a), f(b)}).
Proof. Assume that (X, f) is an N-ideal of X. Let a,b,x € X be such that
x—a<b. Then (x —a) —b =0, and so
f(@) < max{f(z —a), f(a)}

< max{max{f((z —a) =), f(0)}, f(a)}

= max{max{f(0), f(b)}, f(a)}

= max{f(a), f(b)}
by (3.4) and (3.1).

Conversely, let (X, f) be an N -structure satisfying the condition (3.5). Since

0—x <z for all x € X, it follows from (3.5) that

f(0) < max{f(z), f(x)} = f(x)
for all x € X. Note that x — (z —y) < y for all z,y € X. Using (3.5), we have
f(z) <max{f(z —vy), f(y)} for all z,y € X. Hence (X, f) is an N-ideal of X
by Theorem 3.9. O

Theorem 3.13. An N -structure (X, f) is an N-ideal (X, f) of X if and only
if it satisfies:

(3.6) f(z) <max{f(a;) |i=1,2,...,n}

for all z,a1,a9,...,a, € X with (- ((x —a1) —az) —--+) —ap, =0.

Proof. Assume that (X, f) is an N-ideal of X. If z — a = 0 for any z,a € X,
then f(z) < f(a) by Corollary 3.8. Let a,b,z € X be such that (z—a)—b=0.

Then f(x) < max{f(a), f(b)} by Theorem 3.12. Now let z,a1,as,...,a, € X
be such that
(- (x—a1)—a)—-)—a, =0.
By induction on n, we conclude that f(z) < max{f(a;)|i=1,2,...,n}.
Conversely, let (X, f) be an N-structure in which (3.6) is valid for all
x,a1,0a2,...,0, € X with (---((x —a1) —az) —--+) —an = 0. Then

(3.7) f(z) < max{f(y), f(2)}

for all z,y,z € X with (x —y) — 2 = 0. Since (0 —z) —z = 0 for all x € X,
it follows from (3.7) that f(0) < max{f(z), f(z)} = f(x). Note that (x — (z —
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y)) —y =0 for all z,y € X. Using (3.7), we have f(x) < max{f(z —vy), f(y)}
for all z,y € X. Therefore (X, f) is an N-ideal of X by Theorem 3.9. O

Proposition 3.14. In an N-ideal (X, f) of X, the following assertions are
equivalent:

(1) (Vz,y e X) (f(z—y) < f((x—y) —y)).
(2) (Vo,y,2€ X) (f((x—2) = (y—2)) < f((x —y) — 2)).
(

Proof. Assume that (1) is valid and let z,y, z € X. Since
(z-—(w—2)—2)—z2=(r-2)-(y—2) —2<(z—y) — 2

it follows from Corollary 3.8 that f(((z — (y—2)) —2) —2) < f((x —y) — 2) so
from (S3) and (1) that

fz=2)=(y=2)=f(x=(y—2) - 2)

Conversely, suppose that (2) is valid. If we use z instead of y in (2), then

fla=2)=f((z-2)=0) = f((z —2) = (2= 2)) < f((& = 2) = 2)
for all z, z € X by using (a2). This proves (1). O

For any element w of X, we consider the set
Xo :={ze X | f(x) < f(w)}.
Obviously, w € X,,, and so X,, is a non-empty subset of X.

Theorem 3.15. Let w be an element of X. If (X, f) is an N-ideal of X, then
the set X, is an ideal of X.

Proof. Obviously, 0 € X,, by (3.1). Let z,y € X be such that z —y € X,, and
y € Xy Then f(z —y) < f(w) and f(y) < f(w). Since (X, f) is an N-ideal of
X, it follows from (3.4) that

f(@) <max{f(z —y), f(¥)} < f(w)
so that « € X,,. Hence X, is an ideal of X. O

Theorem 3.16. Let w be an element of X and let (X, f) be an N -structure
of X and f. Then

(1) If Xy is an ideal of X, then (X, f) satisfies the following assertion:

(3.8) (Va,y,2z € X)(f(x) = max{f(y — 2), f(2)} = [f(z)= [f(y))
(2) If (X, f) satisfies (3.1) and (3.8), then Xy, is an ideal of X.
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Proof. (1) Assume that X, is an ideal of X for each w € X. Let x,y,2 € X
be such that f(x) > max{f(y — z2), f(2)}. Then y — z € X, and z € X,. Since
X, is an ideal of X it follows that y € X, that is, f(y) < f(x).

(2) Suppose that (X, f) satisfies (3.1) and (3.8). Foreach w € X, let x,y € X
be such that z —y € X, and y € X,,. Then f(z —y) < f(w) and f(y) < f(w),
which imply that max{f(z—y), f(y)} < f(w). Using (3.8), we have f(w) > f(z)
and so z € X,,. Obviously 0 € X,,. Therefore X,, is an ideal of X. [l

Let (X, f) and (X, g) be two N-structures. We say that (X, f) is a retrench-
ment of (X, g) (see [4]) if f(x) < g(x) for all x € X.

Definition 3.17. Let (X, f) be an N-structure. An A -structure (X,g) is
called a created N -ideal of (X, f) if it satisfies:
(i) (X,g) is an N-ideal of X.
(ii) (X, g) is a retrenchment of (X, f).
(iii) For any N-ideal (X, h) of X, if (X, h) is a retrenchment of (X, f), then
(X, h) is a retrenchment of (X, g).

The created N-ideal of (X, f) will be denoted by (X,[f]). Note that the
created N-ideal of (X, f) is the greatest A-ideal in X which is a retrenchment
of (X, f). We discuss how to make a created N-ideal of an N -structure (X, f).

Theorem 3.18. For any N -structure (X, f), the created N -ideal (X, [f]) of
(X, f) is described as follows:

[f](z) = inf{max{f(ai) |i=1,2,...n} ‘ (- ('('x.)—_az)n—:a(g))— }

Proof. Let (X, g) be an N -structure in which g is defined by

(- (@ —ar) —az)- }

g(z)inf{max{f(ai)|i1,2,...n} ) —ap =0

Let x,a,b € X be such that

(39) (1’ — a) —b=0.

For any € > 0, there exist a1, as,...,an,b1,b2,...,b, € X such that
... — — —_ . J— ”l:()7

(3.10) (- ((a—a)—as) =) —a
(o ((b=b1) —by) — ) — b =0

and

(3.11) g(a) > max{f(a;) | i=1,2,...,n} —e,

g(b) > max{f(b;) | j=1,2,...,m} —e.
Using (3.9) and (3.10), we have

(o (o (@ = a) = az) = +0) = @) = b1) = b) = +++) = by =0.
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Applying the definition of g and using (3.11), we have

g(x) < maX{f(a’l)? f(a2)7 IR f(an)a f(b1)7 f(bQ)’ SRR f(bm)}
< max{g(a) +¢,9(b) + ¢}
= max{g(a),g(b)} +¢.

Since € is arbitrary, it follows that g(x) < max{g(a), g(b)} so from Theorem 3.12
that (X, g) is an N-ideal in X. Now since  — 2 = 0 for all 2 € X, we obtain
g(x) < f(z) for all z € X, and so (X, g) is a retrenchment of (X, f). Let (X, h)
be an N-ideal in X which is a retrenchment of (X, f). For any x € X, we have

ote) = nt {max{ 0 [ i = 1,2, | 0 (07 o) o)

> inf{max{h(ai) | i=1,2,-- n} ( .. (({E )__ala)n_:aé)_ }

> inf{h(x)} = h(a),

and so (X,h) is a retrenchment of (X,g). Therefore (X,g) is a created N-
ideal of (X, f). Since (X, [f]) is greatest, we have g = [f]. This completes the
proof. ([
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