Commun. Korean Math. Soc. **25** (2010), No. 2, pp. 173–184 DOI 10.4134/CKMS.2010.25.2.173

$\mathcal N\text{-}\mathrm{IDEALS}$ of subtraction algebras

YOUNG BAE JUN, JACOB KAVIKUMAR, AND KEUM SOOK SO

ABSTRACT. Using \mathcal{N} -structures, the notion of an \mathcal{N} -ideal in a subtraction algebra is introduced. Characterizations of an \mathcal{N} -ideal are discussed. Conditions for an \mathcal{N} -structure to be an \mathcal{N} -ideal are provided. The description of a created \mathcal{N} -ideal is established.

1. Introduction

A (crisp) set A in a universe X can be defined in the form of its characteristic function $\mu_A: X \to \{0, 1\}$ yielding the value 1 for elements belonging to the set A and the value 0 for elements excluded from the set A. So far most of the generalization of the crisp set have been conducted on the unit interval [0,1]and they are consistent with the asymmetry observation. In other words, the generalization of the crisp set to fuzzy sets relied on spreading positive information that fit the crisp point $\{1\}$ into the interval [0, 1]. Because no negative meaning of information is suggested, we now feel a need to deal with negative information. To do so, we also feel a need to supply mathematical tool. To attain such object, Jun et al. [4] introduced a new function which is called negative-valued function, and constructed \mathcal{N} -structures. They discussed \mathcal{N} subalgebras and \mathcal{N} -ideals in BCK/BCI-algebras. Schein [6] considered systems of the form $(\Phi; \circ, \backslash)$, where Φ is a set of functions closed under the composition " \circ " of functions (and hence (Φ ; \circ) is a function semigroup) and the set theoretic subtraction "\" (and hence $(\Phi; \setminus)$ is a subtraction algebra in the sense of [1]). He proved that every subtraction semigroup is isomorphic to a difference semigroup of invertible functions. Zelinka [7] discussed a problem proposed by Schein concerning the structure of multiplication in a subtraction semigroup. He solved the problem for subtraction algebras of a special type, called the atomic subtraction algebras. Jun et al. [2, 3] introduced the notion of ideals in subtraction algebras and discussed characterization of ideals. Jun et al. [5] provided conditions for an ideal to be irreducible. They introduced the notion of an order system in a subtraction algebra, and investigated related properties. They provided relations between ideals and order systems, and dealt with

O2010 The Korean Mathematical Society

Received October 9, 2009.

 $^{2000\} Mathematics\ Subject\ Classification.\ 06F35,\ 03G25.$

Key words and phrases. subtraction algebra, \mathcal{N} -ideal, \mathcal{N} -subalgebra, created \mathcal{N} -ideal.

the concept of a fixed map in a subtraction algebra, and investigate related properties.

In this paper, we introduced the notion of a (created) \mathcal{N} -ideal of subtraction algebras, and investigate several characterizations of \mathcal{N} -ideals. We discuss how to make a created \mathcal{N} -ideal of an \mathcal{N} -structure (X, f).

2. Preliminaries

By a subtraction algebra we mean an algebra (X; -) with a single binary operation "-" that satisfies the following identities: for any $x, y, z \in X$,

 $(S1) \quad x - (y - x) = x;$

(S2) x - (x - y) = y - (y - x);

(S3) (x-y) - z = (x-z) - y.

The last identity permits us to omit parentheses in expressions of the form (x - y) - z. The subtraction determines an order relation on $X: a \leq b \Leftrightarrow a - b = 0$, where 0 = a - a is an element that does not depend on the choice of $a \in X$. The ordered set $(X; \leq)$ is a semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in which every interval [0, a] is a Boolean algebra with respect to the induced order. Here $a \wedge b = a - (a - b)$; the complement of an element $b \in [0, a]$ is a - b; and if $b, c \in [0, a]$, then

$$b \lor c = (b' \land c')' = a - ((a - b) \land (a - c))$$

= a - ((a - b) - ((a - b) - (a - c))).

In a subtraction algebra, the following are true (see [3]):

- (a1) (x y) y = x y. (a2) x - 0 = x and 0 - x = 0. (a3) (x - y) - x = 0. (a4) $x - (x - y) \le y$. (a5) (x - y) - (y - x) = x - y. (a6) x - (x - (x - y)) = x - y. (a7) $(x - y) - (z - y) \le x - z$. (a8) $x \le y$ if and only if x = y - w for some $w \in X$. (a9) $x \le y$ implies $x - z \le y - z$ and $z - y \le z - x$ for all $z \in X$. (a10) $x, y \le z$ implies $x - y = x \land (z - y)$.
- (a11) $(x \wedge y) (x \wedge z) \leq x \wedge (y z).$

Definition 2.1 ([3]). A nonempty subset A of a subtraction algebra X is called an *ideal* of X if it satisfies:

- (b1) $a x \in A$ for all $a \in A$ and $x \in X$.
- (b2) for all $a, b \in A$, whenever $a \lor b$ exists in X then $a \lor b \in A$.

Proposition 2.2 ([3]). A nonempty subset A of a subtraction algebra X is an ideal of X if and only if it satisfies:

- (b3) $0 \in A$,
- (b4) $(\forall x \in X)(\forall y \in A)(x y \in A \Rightarrow x \in A).$

TABLE 1. Cayley table

-	0	a	b
0	0	0	0
a	a	0	a
b	b	b	0

Proposition 2.3 ([3]). Let X be a subtraction algebra and let $x, y \in X$. If $w \in X$ is an upper bound for x and y, then the element

$$x \lor y := w - ((w - y) - x)$$

is a least upper bound for x and y.

3. N-ideals of subtraction algebras

Denote by $\mathcal{F}(X, [-1, 0])$ the collection of functions from a set X to [-1, 0]. We say that an element of $\mathcal{F}(X, [-1, 0])$ is a *negative-valued function* from X to [-1, 0] (briefly, \mathcal{N} -function on X). By an \mathcal{N} -structure we mean an ordered pair (X, f) of X and an \mathcal{N} -function f on X. In what follows, let X denote a subtraction algebra and f an \mathcal{N} -function on X unless otherwise specified.

For any \mathcal{N} -function f on X and $t \in [-1, 0)$, the set

$$C(f;t) := \{x \in X \mid f(x) \le t\}$$

is called a *closed* (f, t)-*cut* of (X, f).

Definition 3.1. By an *ideal* (resp. *subalgebra*) of X based on \mathcal{N} -function f (briefly, \mathcal{N} -*ideal* (resp. \mathcal{N} -*subalgebra*) of X), we mean an \mathcal{N} -structure (X, f) in which every nonempty closed (f, t)-cut of (X, f) is an ideal (resp. subalgebra) of X for all $t \in [-1, 0)$.

Example 3.2. Let $X = \{0, a, b\}$ be a subtraction algebra with the Cayley table which is given in Table 1 (see [5]). Let (X, f) be an \mathcal{N} -structure in which f is given by

$$f = \begin{pmatrix} 0 & a & b \\ -0.7 & -0.3 & -0.5 \end{pmatrix}.$$

It is easy to check that (X, f) is an \mathcal{N} -ideal of X.

Theorem 3.3. An \mathcal{N} -structure (X, f) is an \mathcal{N} -ideal of X if and only if it satisfies the following assertions:

- (1) $(\forall x, y \in X) (f(x-y) \leq f(x)),$
- (2) $(\forall x, y \in X) \ (\exists x \lor y \Rightarrow f(x \lor y) \le \max\{f(x), f(y)\}).$

Proof. Assume that an \mathcal{N} -structure (X, f) satisfies two conditions (1) and (2). Let $t \in [-1, 0)$ be such that $C(f; t) \neq \emptyset$. Let $x \in X$ and $a \in C(f; t)$. Then

 $f(a) \leq t$, and so $f(a - x) \leq f(a) \leq t$ by (1), i.e., $a - x \in C(f; t)$. Assume that $a \vee b$ exists in X for all $a, b \in C(f; t)$. Then

$$f(a \lor b) \le \max\{f(a), f(b)\} \le t$$

by (2), and so $a \lor b \in C(f;t)$. Therefore C(f;t) is an ideal of X, that is, (X, f) is an \mathcal{N} -ideal of X.

Conversely, suppose that (X, f) is an \mathcal{N} -ideal of X, that is, every nonempty closed (f, t)-cut of (X, f) is an ideal of X for all $t \in [-1, 0)$. If there are $a, b \in X$ such that f(a-b) > f(a), then $f(a-b) > t_a \ge f(a)$ for some $t_a \in [-1, 0)$. Thus $a \in C(f; t_a)$, but $a-b \notin C(f; t_a)$. This is a contradiction, and so $f(x-y) \le f(x)$ for all $x, y \in X$. Assume that there exist $a, b \in X$ such that $a \lor b$ exists and $f(a \lor b) > \max\{f(a), f(b)\}$. Then $f(a \lor b) > t_0 \ge \max\{f(a), f(b)\}$ for some $t_0 \in [-1, 0)$. It follows that $a, b \in C(f; t_0)$ and $a \lor b \notin C(f; t_0)$ which is a contradiction. Therefore (2) is valid. \Box

Corollary 3.4. Every \mathcal{N} -ideal (X, f) satisfies the following inequality:

$$(3.1) \qquad (\forall x \in X) \ (f(0) \le f(x)).$$

Proof. Straightforward.

Theorem 3.5. For a fixed element $w \in X$, let (X, f_w) be an \mathcal{N} -structure in which f_w is give by

$$f_w(x) = \begin{cases} t_1 & \text{if } x - w = 0, \\ t_2 & \text{otherwise} \end{cases}$$

for all $x \in X$ and $t_1, t_2 \in [-1, 0)$ with $t_1 < t_2$. Then (X, f_w) is an \mathcal{N} -ideal of X.

Proof. Let $x, y \in X$. If $x - w \neq 0$, then $f_w(x) = t_2 \geq f_w(x - y)$. If x - w = 0, then $x - y \leq x \leq w$, i.e., (x - y) - w = 0. Thus $f_w(x - y) = t_1 = f_w(x)$. Now if $x - w \neq 0$ or $y - w \neq 0$, then $f_w(x) = t_2$ or $f_w(y) = t_2$. Hence

$$f_w(x \lor y) \le t_2 = \max\{f_w(x), f_w(y)\}$$

whenever $x \lor y$ exists in X. Assume that x - w = 0 and y - w = 0. Then w is an upper bound for x and y. It follows from Proposition 2.3 that $x \lor y$ exists and $x \lor y = w - ((w - y) - x) \le w$, i.e., $x \lor y - w = 0$. Therefore

$$f_w(x \lor y) = t_1 = \max\{f_w(x), f_w(y)\}.$$

Using Theorem 3.3, we conclude that (X, f_w) is an \mathcal{N} -ideal of X.

Theorem 3.6. An \mathcal{N} -structure (X, f) is an \mathcal{N} -ideal of X if and only if it satisfies:

(3.2)
$$(\forall x, a, b \in X) (f(x - ((x - a) - b)) \le \max\{f(a), f(b)\}).$$

176

Proof. Let (X, f) be an \mathcal{N} -structure satisfying (3.2). Using (a2) and (S3), we have

$$x - y = (x - y) - (((x - y) - x) - x)$$

for all $x, y \in X$. It follows from (3.2) that

$$f(x-y) = f((x-y) - (((x-y) - x) - x)) \le \max\{f(x), f(x)\} = f(x)$$

for all $x, y \in X$. Suppose $x \lor y$ exists for $x, y \in X$. Putting $a := x \lor y$, we have $x \lor y = a - ((a - y) - x) = a - ((a - x) - y)$ by Proposition 2.3 and (S3). Using (3.2) implies that

$$f(x \lor y) = f(a - ((a - x) - y)) \le \max\{f(x), f(y)\}\$$

for all $x, y \in X$. Therefore (X, f) is an \mathcal{N} -ideal of X by Theorem 3.3.

Conversely, suppose that (X, f) is an \mathcal{N} -ideal of X. Then the nonempty closed (f, t)-cut of (X, f) is an ideal of X for all $t \in [-1, 0)$. Let $\theta_{C(f;t)}$ be a relation on X defined by

$$(\forall x, y \in X) \ ((x, y) \in \theta_{C(f;t)} \iff x - y \in C(f;t), \ y - x \in C(f;t)).$$

Then $\theta_{C(f;t)}$ is a congruence relation on X. For any $a, b \in C(f;t)$ and $x \in X$, we have $(x, x) \in \theta_{C(f;t)}$, $(a, 0) \in \theta_{C(f;t)}$ and $(b, 0) \in \theta_{C(f;t)}$. Hence

$$(x - ((x - a) - b), 0) = (x - ((x - a) - b), x - ((x - 0) - 0)) \in \theta_{C(f;t)},$$

and so $x - ((x - a) - b) \in C(f; t)$. It follows that

$$f(x - ((x - a) - b)) \le \max\{f(a), f(b)\}\$$

for all $a, b, x \in X$ because if there exist $a_0, b_0 \in X$ such that

$$f(x - ((x - a_0) - b_0)) > \max\{f(a_0), f(b_0)\},\$$

then $f(x - ((x - a_0) - b_0)) > t_0 \ge \max\{f(a_0), f(b_0)\}$ for some $t_0 \in [-1, 0)$. Thus $a_0 \in C(f; t_0)$ and $b_0 \in C(f; t_0)$, but $x - ((x - a_0) - b_0) \notin C(f; t_0)$. This is a contradiction.

Theorem 3.7. An \mathcal{N} -structure (X, f) is an \mathcal{N} -ideal of X if and only if it satisfies the condition (3.1) and

(3.3)
$$(\forall x, y, z \in X) \ (f(x-z) \le \max\{f((x-y)-z), f(y)\}).$$

Proof. Assume that (X, f) is an \mathcal{N} -ideal of X. Then the condition (3.1) is valid by Corollary 3.4. If we put x = x - z in (a3), then ((x - z) - y) - (x - z) = 0, i.e., $(x - z) - y \leq x - z$. If we put x = y and y = x - z in (a4), then $y - (y - (x - z)) \leq x - z$. Hence x - z is an upper bound for (x - z) - y and y - (y - (x - z)). It follows from Proposition 2.3, (S2), (S3) and (a2) that

$$\begin{aligned} &((x-y)-z)\lor y = ((x-y)-z)\lor (y-0) \\ &= ((x-y)-z)\lor (y-(y-y)) \\ &= ((x-y)-z)\lor (y-(y-(x-z))) \\ &= ((x-z)-y)\lor (y-(y-(x-z))) \\ &= (x-z)-(((x-z)-(y-(y-(x-z))))-(((x-z)-y)) \\ &= (x-z)-(((x-z)-((x-z)-y))-(y-(y-(x-z)))) \\ &= (x-z)-((y-(y-(x-z)))-(y-(y-(x-z)))) \\ &= (x-z)-0 = x-z \end{aligned}$$

so from Theorem 3.3(2) that

$$f(x-z) = f(((x-y)-z) \lor y) \le \max\{f((x-y)-z), f(y)\}$$

for all $x, y \in X$.

Conversely, let (X, f) be an \mathcal{N} -structure satisfying two conditions (3.1) and (3.3). Let $t \in [-1,0)$ be such that $C(f;t) \neq \emptyset$. Obviously, $0 \in C(f;t)$ by the condition (3.1). Let $x \in X$ and $a \in C(f;t)$ be such that $x - a \in C(f;t)$. Then $f(a) \leq t$ and $f(x - a) \leq t$. It follows from (3.3) and (a2) that

$$f(x) = f(x - 0) \le \max\{f((x - a) - 0), f(a)\}$$

= max{f(x - a), f(a)} \le t

so that $x \in C(f;t)$. Hence C(f;t) is an ideal of X for all $t \in [-1,0)$ by Proposition 2.2, and so (X, f) is an \mathcal{N} -ideal of X.

Corollary 3.8. Every \mathcal{N} -ideal (X, f) satisfies:

$$(\forall x, y \in X) \ (x \le y \implies f(x) \le f(y)).$$

Proof. Let $x, y \in X$ be such that $x \leq y$. Then x - y = 0, and so

$$f(x) = f(x-0) \le \max\{f((x-y)-0), f(y)\} = \max\{f(0), f(y)\} = f(y)$$

by using (a2), (3.1) and (3.3). This completes the proof.

Theorem 3.9. An \mathcal{N} -structure (X, f) is an \mathcal{N} -ideal of X if and only if it satisfies the condition (3.1) and

(3.4)
$$(\forall x, y \in X) \ (f(x) \le \max\{f(x-y), f(y)\}).$$

Proof. Assume that (X, f) is an \mathcal{N} -ideal of X. Then the condition (3.1) is valid by Corollary 3.4, and the condition (3.4) is by taking z = 0 in (3.3) and using (a2).

Conversely, let (X, f) be an \mathcal{N} -structure satisfying two conditions (3.1) and (3.4). Since

$$(x - ((x - a) - b)) - b = (x - b) - ((x - a) - b) \le x - (x - a) \le a,$$

that is, ((x - ((x - a) - b)) - b) - a = 0 for all $x, a, b \in X$, it follows from (3.1) and (3.4) that

$$f(x - ((x - a) - b))$$

$$\leq \max\{f((x - ((x - a) - b)) - b), f(b)\}$$

$$\leq \max\{\max\{f(((x - ((x - a) - b)) - b) - a), f(a)\}, f(b)\}$$

$$= \max\{\max\{f(0), f(a)\}, f(b)\}$$

$$= \max\{f(a), f(b)\}$$

for all $x, a, b \in X$. Therefore (X, f) is an \mathcal{N} -ideal of X by Theorem 3.6.

Theorem 3.10. For fixed elements $a, b \in X$, let (X, f_a^b) be an \mathcal{N} -structure in which f_a^b is give by

$$f_a^b(x) = \begin{cases} t_1 & if \ (x-a) - b = 0, \\ t_2 & otherwise \end{cases}$$

for all $x \in X$ and $t_1, t_2 \in [-1, 0)$ with $t_1 < t_2$. Then (X, f_a^b) is an \mathcal{N} -ideal of X.

Proof. Since (0-a) - b = 0, we have $f_a^b(0) = t_1 \le f_a^b(x)$ for all $x \in X$. Let $x, y \in X$. If (x-a) - b = 0, then $f_a^b(x) = t_1 \le \max\{f_a^b(x-y), f_a^b(y)\}$. Suppose that $(x-a) - b \ne 0$. If (y-a) - b = 0 and ((x-y) - a) - b = 0, then

$$\begin{aligned} (x-a) - b &= ((x-a) - b) - 0 \\ &= ((x-a) - b) - ((y-a) - b) \\ &= ((x-a) - (y-a)) - b \\ &= ((x-y) - a) - b = 0, \end{aligned}$$

a contradiction. Hence $(y-a) - b \neq 0$ or $((x-y) - a) - b \neq 0$, and thus $f_a^b(y) = t_2$ or $f_a^b(x-y) = t_2$. It follows that

$$f_a^b(x) = t_2 = \max\{f_a^b(x-y), f_a^b(y)\}.$$

Hence, by Theorem 3.9, (X, f_a^b) is an \mathcal{N} -ideal of X.

Theorem 3.11. For an ideal A of X and a fixed element $w \in X$, let (X, f_A^w) be an \mathcal{N} -structure in which f_A^w is give by

$$f_A^w(x) = \begin{cases} t_1 & \text{if } x - w \in A, \\ t_2 & \text{otherwise} \end{cases}$$

for all $x \in X$ and $t_1, t_2 \in [-1, 0)$ with $t_1 < t_2$. Then (X, f_A^w) is an \mathcal{N} -ideal of X.

Proof. Since $0 - w = 0 \in A$, we get $f_A^w(0) = t_1 \leq f_A^w(x)$ for all $x \in X$. Let $x, y \in X$. If $x - w \in A$, then $f_A^w(x) = t_1 \leq \max\{f_A^w(x - y), f_A^w(y)\}$. Suppose that $x - w \notin A$. If $y - w \in A$ and $(x - y) - w \in A$, then

$$(x - w) - (y - w) = (x - y) - w \in A.$$

Since A is an ideal and $y - w \in A$, it follows from (b4) that $x - w \in A$ which is a contradiction. Therefore $y - w \notin A$ or $(x - y) - w \notin A$, and so $f_A^w(y) = t_2$ or $f_A^w(x - y) = t_2$. Thus

$$f_A^w(x) = t_2 = \max\{f_A^w(x-y), f_A^w(y)\}.$$

Using Theorem 3.9, we know that (X, f_A^w) is an \mathcal{N} -ideal of X.

Theorem 3.12. An \mathcal{N} -structure (X, f) is an \mathcal{N} -ideal of X if and only if it satisfies:

$$(3.5) \qquad (\forall a, b, x \in X) \ (x - a \le b \implies f(x) \le \max\{f(a), f(b)\}).$$

Proof. Assume that (X, f) is an \mathcal{N} -ideal of X. Let $a, b, x \in X$ be such that $x - a \leq b$. Then (x - a) - b = 0, and so

$$f(x) \le \max\{f(x-a), f(a)\} \\\le \max\{\max\{f((x-a)-b), f(b)\}, f(a)\} \\= \max\{\max\{f(0), f(b)\}, f(a)\} \\= \max\{f(a), f(b)\}$$

by (3.4) and (3.1).

Conversely, let (X, f) be an \mathcal{N} -structure satisfying the condition (3.5). Since $0 - x \leq x$ for all $x \in X$, it follows from (3.5) that

$$f(0) \le \max\{f(x), f(x)\} = f(x)$$

for all $x \in X$. Note that $x - (x - y) \leq y$ for all $x, y \in X$. Using (3.5), we have $f(x) \leq \max\{f(x - y), f(y)\}$ for all $x, y \in X$. Hence (X, f) is an \mathcal{N} -ideal of X by Theorem 3.9.

Theorem 3.13. An \mathcal{N} -structure (X, f) is an \mathcal{N} -ideal (X, f) of X if and only if it satisfies:

(3.6)
$$f(x) \le \max\{f(a_i) \mid i = 1, 2, \dots, n\}$$

for all $x, a_1, a_2, \ldots, a_n \in X$ with $(\cdots ((x - a_1) - a_2) - \cdots) - a_n = 0.$

Proof. Assume that (X, f) is an \mathcal{N} -ideal of X. If x - a = 0 for any $x, a \in X$, then $f(x) \leq f(a)$ by Corollary 3.8. Let $a, b, x \in X$ be such that (x - a) - b = 0. Then $f(x) \leq \max\{f(a), f(b)\}$ by Theorem 3.12. Now let $x, a_1, a_2, \ldots, a_n \in X$ be such that

$$(\cdots ((x - a_1) - a_2) - \cdots) - a_n = 0.$$

By induction on n, we conclude that $f(x) \leq \max\{f(a_i) \mid i = 1, 2, ..., n\}$.

Conversely, let (X, f) be an \mathcal{N} -structure in which (3.6) is valid for all $x, a_1, a_2, \ldots, a_n \in X$ with $(\cdots((x - a_1) - a_2) - \cdots) - a_n = 0$. Then

$$(3.7) f(x) \le \max\{f(y), f(z)\}$$

for all $x, y, z \in X$ with (x - y) - z = 0. Since (0 - x) - x = 0 for all $x \in X$, it follows from (3.7) that $f(0) \le \max\{f(x), f(x)\} = f(x)$. Note that $(x - (x - x)) \le f(x)$.

(y) - y = 0 for all $x, y \in X$. Using (3.7), we have $f(x) \le \max\{f(x-y), f(y)\}$ for all $x, y \in X$. Therefore (X, f) is an \mathcal{N} -ideal of X by Theorem 3.9.

Proposition 3.14. In an \mathcal{N} -ideal (X, f) of X, the following assertions are equivalent:

(1) $(\forall x, y \in X) (f(x-y) \le f((x-y)-y)).$ (2) $(\forall x, y, z \in X) (f((x-z)-(y-z)) \le f((x-y)-z)).$

Proof. Assume that (1) is valid and let $x, y, z \in X$. Since

$$((x - (y - z)) - z) - z = ((x - z) - (y - z)) - z \le (x - y) - z,$$

it follows from Corollary 3.8 that $f(((x - (y - z)) - z) - z) \le f((x - y) - z)$ so from (S3) and (1) that

$$f((x-z) - (y-z)) = f((x - (y - z)) - z)$$

$$\leq f(((x - (y - z)) - z) - z)$$

$$\leq f((x - y) - z).$$

Conversely, suppose that (2) is valid. If we use z instead of y in (2), then

$$f(x-z) = f((x-z) - 0) = f((x-z) - (z-z)) \le f((x-z) - z)$$

for all $x, z \in X$ by using (a2). This proves (1).

For any element w of X, we consider the set

$$X_w := \{ x \in X \mid f(x) \le f(w) \}.$$

Obviously, $w \in X_w$, and so X_w is a non-empty subset of X.

Theorem 3.15. Let w be an element of X. If (X, f) is an \mathcal{N} -ideal of X, then the set X_w is an ideal of X.

Proof. Obviously, $0 \in X_w$ by (3.1). Let $x, y \in X$ be such that $x - y \in X_w$ and $y \in X_w$. Then $f(x - y) \leq f(w)$ and $f(y) \leq f(w)$. Since (X, f) is an \mathcal{N} -ideal of X, it follows from (3.4) that

$$f(x) \le \max\{f(x-y), f(y)\} \le f(w)$$

so that $x \in X_w$. Hence X_w is an ideal of X.

Theorem 3.16. Let w be an element of X and let (X, f) be an \mathcal{N} -structure of X and f. Then

(1) If X_w is an ideal of X, then (X, f) satisfies the following assertion:

$$(3.8) \quad (\forall x, y, z \in X)(f(x) \ge \max\{f(y-z), f(z)\} \implies f(x) \ge f(y)).$$

(2) If (X, f) satisfies (3.1) and (3.8), then X_w is an ideal of X.

Proof. (1) Assume that X_w is an ideal of X for each $w \in X$. Let $x, y, z \in X$ be such that $f(x) \ge \max\{f(y-z), f(z)\}$. Then $y-z \in X_x$ and $z \in X_x$. Since X_x is an ideal of X, it follows that $y \in X_x$, that is, $f(y) \le f(x)$.

(2) Suppose that (X, f) satisfies (3.1) and (3.8). For each $w \in X$, let $x, y \in X$ be such that $x - y \in X_w$ and $y \in X_w$. Then $f(x - y) \leq f(w)$ and $f(y) \leq f(w)$, which imply that $\max\{f(x-y), f(y)\} \leq f(w)$. Using (3.8), we have $f(w) \geq f(x)$ and so $x \in X_w$. Obviously $0 \in X_w$. Therefore X_w is an ideal of X.

Let (X, f) and (X, g) be two \mathcal{N} -structures. We say that (X, f) is a *retrench*ment of (X, g) (see [4]) if $f(x) \leq g(x)$ for all $x \in X$.

Definition 3.17. Let (X, f) be an \mathcal{N} -structure. An \mathcal{N} -structure (X, g) is called a *created* \mathcal{N} -*ideal* of (X, f) if it satisfies:

- (i) (X, g) is an \mathcal{N} -ideal of X.
- (ii) (X, g) is a retrenchment of (X, f).
- (iii) For any \mathcal{N} -ideal (X, h) of X, if (X, h) is a retrenchment of (X, f), then (X, h) is a retrenchment of (X, g).

The created \mathcal{N} -ideal of (X, f) will be denoted by (X, [f]). Note that the created \mathcal{N} -ideal of (X, f) is the greatest \mathcal{N} -ideal in X which is a retrenchment of (X, f). We discuss how to make a created \mathcal{N} -ideal of an \mathcal{N} -structure (X, f).

Theorem 3.18. For any \mathcal{N} -structure (X, f), the created \mathcal{N} -ideal (X, [f]) of (X, f) is described as follows:

$$[f](x) = \inf \left\{ \max\{f(a_i) \mid i = 1, 2, \dots n\} \middle| \begin{array}{c} (\cdots ((x - a_1) - a_2) - \\ \cdots) - a_n = 0 \end{array} \right\}$$

Proof. Let (X, g) be an \mathcal{N} -structure in which g is defined by

$$g(x) = \inf \left\{ \max\{f(a_i) \mid i = 1, 2, \dots, n\} \middle| \begin{array}{c} (\cdots ((x - a_1) - a_2) - \\ \cdots) - a_n = 0 \end{array} \right\}.$$

Let $x, a, b \in X$ be such that

$$(3.9) (x-a) - b = 0.$$

For any $\varepsilon > 0$, there exist $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_m \in X$ such that

(3.10)
$$(\cdots ((a-a_1)-a_2)-\cdots)-a_n=0, \\ (\cdots ((b-b_1)-b_2)-\cdots)-b_m=0$$

and

(3.11)
$$g(a) > \max\{f(a_i) \mid i = 1, 2, \dots, n\} - \varepsilon, \\ g(b) > \max\{f(b_j) \mid j = 1, 2, \dots, m\} - \varepsilon.$$

Using (3.9) and (3.10), we have

$$(\cdots((((\cdots((x-a_1)-a_2)-\cdots)-a_n)-b_1)-b_2)-\cdots)-b_m=0.$$

Applying the definition of g and using (3.11), we have

$$g(x) \le \max\{f(a_1), f(a_2), \dots, f(a_n), f(b_1), f(b_2), \dots, f(b_m)\}$$

$$< \max\{g(a) + \varepsilon, g(b) + \varepsilon\}$$

$$= \max\{g(a), g(b)\} + \varepsilon.$$

Since ε is arbitrary, it follows that $g(x) \leq \max\{g(a), g(b)\}$ so from Theorem 3.12 that (X, g) is an \mathcal{N} -ideal in X. Now since x - x = 0 for all $x \in X$, we obtain $g(x) \leq f(x)$ for all $x \in X$, and so (X, g) is a retrenchment of (X, f). Let (X, h) be an \mathcal{N} -ideal in X which is a retrenchment of (X, f). For any $x \in X$, we have

$$g(x) = \inf \left\{ \max\{f(a_i) \mid i = 1, 2, \dots n\} \middle| \begin{array}{c} (\dots ((x - a_1) - a_2) - \\ \dots) - a_n = 0 \end{array} \right\}$$
$$\geq \inf \left\{ \max\{h(a_i) \mid i = 1, 2, \dots n\} \middle| \begin{array}{c} (\dots ((x - a_1) - a_2) - \\ \dots) - a_n = 0 \end{array} \right\}$$
$$\geq \inf\{h(x)\} = h(x),$$

and so (X, h) is a retrenchment of (X, g). Therefore (X, g) is a created \mathcal{N} ideal of (X, f). Since (X, [f]) is greatest, we have g = [f]. This completes the
proof.

References

- J. C. Abbott, Sets, Lattices and Boolean Algebras, Allyn and Bacon, Inc., Boston, Mass. 1969.
- [2] Y. B. Jun and H. S. Kim, On ideals in subtraction algebras, Sci. Math. Jpn. 65 (2007), no. 1, 129–134.
- [3] Y. B. Jun, H. S. Kim, and E. H. Roh, Ideal theory of subtraction algebras, Sci. Math. Jpn. 61 (2005), no. 3, 459–464.
- [4] Y. B. Jun, K. J. Lee, and S. Z. Song, *N*-ideals of BCK/BCI-algebras, J. Chungcheong Math. Soc. 22 (2009), 417–437.
- [5] Y. B. Jun, C. H. Park, and E. H. Roh, Order systems, ideals and right fixed maps of subtraction algebras, Commun. Korean Math. Soc. 23 (2008), no. 1, 1–10.
- [6] B. M. Schein, Difference semigroups, Comm. Algebra 20 (1992), no. 8, 2153–2169.
- [7] B. Zelinka, Subtraction semigroups, Math. Bohem. 120 (1995), no. 4, 445–447.

Young Bae Jun Department of Mathematics Education (and RINS) Gyeongsang National University Chinju 660-701, Korea *E-mail address:* skywine@gmail.com

JACOB KAVIKUMAR CENTRE FOR SCIENCE STUDIES UNIVERSITI TUN HUSSEIN ONN MALAYSIA 86400 BATU PAHAT, JOHOR, MALAYSIA *E-mail address*: kaviphd@gmail.com KEUM SOOK SO DEPARTMENT OF MATHEMATICS HALLYM UNIVERSITY CHUNCHEON 200-702, KOREA *E-mail address*: ksso@hallym.ac.kr