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EXISTENCE AND NON-EXISTENCE
FOR SCHRÖDINGER EQUATIONS INVOLVING

CRITICAL SOBOLEV EXPONENTS

Henghui Zou

Abstract. We study existence of positive solutions of the classical non-
linear Schrödinger equation

−∆u + V (x)u− f(x, u)−H(x)u2∗−1 = 0, u > 0 in Rn

u → 0 as |x| → ∞.

In fact, we consider the following more general quasi-linear Schrödinger
equation

−div(|∇u|m−2∇u) + V (x)um−1

−f(x, u)−H(x)um∗−1 = 0, u > 0 in Rn

u → 0 as |x| → ∞,

where m ∈ (1, n) is a positive number and

m∗ :=
mn

n−m
> 0,

is the corresponding critical Sobolev embedding number in Rn. Under
appropriate conditions on the functions V (x), f(x, u) and H(x), existence
and non-existence results of positive solutions have been established.

1. Introduction

Let n ≥ 2 be an integer and let

V (x), H(x) : Rn → R f(x, u) : Rn ×R → R

be real functions satisfying appropriate conditions to be specified later. Con-
sider the following quasi-linear elliptic differential equation
(1.1)

−∆mu + V (x)um−1 − f(x, u)−H(x)um∗−1 = 0, u > 0 in Rn

u → 0 as |x| → ∞,
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where m ∈ (1, n) is a positive number and

m∗ :=
mn

n−m
> 0,

is the critical exponent of the Sobolev embedding W 1,m(Rn) ↪→ Lm∗
(Rn), and

∆m· = div(|∇ · |m−2∇·)
is the m-Laplace operator. When m = 2, (1.1) reduces to the classical non-
linear Schrödinger equation

(1.2)
−∆u + V (x)u− f(x, u)−H(x)u2∗−1 = 0, u > 0, in Rn

u → 0 as |x| → ∞.

We are concerned with the question of existence of a non-negative and non-
trivial function u ∈ W 1,m(Rn), called a solution of (1.1), satisfying (1.1). Ex-
ploiting the variational structure of (1.1), we shall employ the minimax methods
to find suitable critical points of a functional corresponding to (1.1), which are
in turn non-negative and non-trivial solutions of (1.1).

We begin with notations and assumptions.
As is custom, for a real measurable function h(x) on Rn, put

h+ = h+(x) = max{h(x), 0}, h− = h−(x) = max{−h(x), 0}.
For t ∈ R, set

Ωt := {x ∈ Rn |V (x) ≤ t}.
Throughout the entire paper, we assume that the functions V (x), f(x, u) and
H(x) satisfy the following conditions, unless otherwise specified.

(V) There exists τ0 > 0 such that the set Ωτ0 has the finite Lebesgue
measure. Moreover, V ∈ L∞loc(R

n) and there holds

V0 :=
(∫

Rn

V
n/m
−

)m/n

< S,

where S = Sm is the best constant for the Sobolev embedding

W 1,m(Rn) ↪→ Lm∗
(Rn).

(H) H ∈ C(Rn) is non-negative and bounded from above, i.e.,

0 ≤ H(x) ≤ H0 = sup
x∈Rn

H(x) < ∞.

(F) There exist constants β > 0 and α1, α2 ∈ (m,m∗) such that

β(|u|α1 + |u|α2) ≥ uf(x, u) ≥ α1F (x, u) ≥ 0, (x, u) ∈ Rn ×R,

where F is the primitive of f

F (x, u) =
∫ u

0

f(x, s)ds.
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Denote W 1,m(Rn) the Sobolev space of weakly differentiable functions on
R

n equipped with the standard norm

||u||1 :=
(∫

Rn

|∇u|m +
∫

Rn

|u|m
)1/m

.

Let E be the subspace of W 1,m(Rn) consisting of all elements satisfying

||u|| :=
( ∫

Rn

|∇u|m +
∫

Rn

V+|u|m
)1/m

< ∞.

Then E is a Banach space equipped with the norm (see Lemma 2.3, or [6])

||u|| ≥ C||u||1, u ∈ E.

Consider the functional
(1.3)

J(u) =
1
m

∫

Rn

(|∇u|m + V |u|m)−
∫

Rn

F (x, u)− 1
m∗

∫

Rn

H|u|m∗
, u ∈ E.

Clearly J ∈ C1(E,R) and its Lagrange-Euler equation is (1.1) (actually for non-
negative critical points, which are precisely what we are looking for though).
Therefore we turn to use the minimax methods of critical point theory to seek
existence of non-negative and non-trivial critical points of J in E, which are
non-negative and non-trivial solutions of (1.1).

Let Φ be a real C1 functional on a real Banach space X and let A be a
suitable class of subsets of X. By properly choosing the class A, one may
employ the minimax methods to characterize the so-called minimax values

c := inf
A∈A

max
u∈A

Φ(u),

as critical values of Φ, see for example [10] for more details.
In this paper we apply the well known mountain-pass lemma to obtain the

existence of critical values (and critical points, of course) of J given by (1.3),
where the class A consists of all continuous paths from the origin to some point
v ∈ X (v 6= 0):

(1.4) A = Γv := {γ ∈ C([0, 1], X) | γ(0) = 0, γ(1) = v},
and hence

(1.5) c = cv := inf
γ∈Γv

max
u∈γ

Φ(u).

To this end, one needs to choose a proper v with some care. On the other
hand, in applying a variational argument like the mountain-pass lemma, the
so-called Palais-Smale, (PS) for short, condition plays a crucial role. Such a
compactness requirement ensures the convergence of a so-called (PS) sequence
{xj} ⊂ X which satisfies

Φ(xj) → c ∈ R, Φ′(xj) → 0 in X∗.

It is known that the functional J does not satisfy the (PS) condition in
general, whence the mountain-pass lemma need not apply in general. This
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is due to the lacking of compactness in both the underlying space Rn and
functional J (i.e., the presence of the term |u|m∗

with a critical growth). In the
pioneer work [4], however, it was observed that certain functionals Φ may fail
to satisfy the (PS) condition in general, but satisfy a local version of the (PS)
condition. For example, a (PS) sequence {xj} of Φ, under proper restriction,
may be convergent if the values of the set {Φ(xj)} are below a certain value c0.
Consequently, a minimax value c < c0 can then be characterized as a critical
value of Φ. This observation was successfully used to establish existence of
positive solutions for semi-linear boundary value problems involving critical
Sobolev exponents on bounded domains in [4]. There the presence of a linear
term λu is crucial to their arguments.

In a recent article [6], the authors considered the perturbed Schrödinger
equations (4.9) with m = 2. For all ε > 0 sufficiently small, it was proved
directly that there exists c0 > 0 such that the corresponding functional Jε

satisfies a local (PS) condition and, moreover, Jε possesses minimax values
below level c0. Consequently, all points with such small positive minimax
values are critical points of Jε, which are desired solutions of (4.9). The work
[6] extends the classical work [4] to the entire space Rn, where the lacking
of compactness is severer: in both the functional Jε and underlying space
R

n. Again, the presence of the lower order non-linear term f(x, u) (relative to
the critical growth term |u|m∗

) plays a key role to compensate the lacking of
compactness.

Turning back to (1.1), our first goal is to relax the requirements of [6] on the
potential V (x). In the meantime, we extend the work [6] to the quasi-linear
analogue with a non-linear principal part ∆m. We have the following main
existence result.

Theorem 1.1. There exists a positive number κ0 = κ0(n,m, α1, α2, β, τ0, H0)
> 0 such that (1.1) admits a positive solution, provided that there exists φ0 ∈ E
such that

(1.6) max
t≥0

J(tφ0) < κ0, lim inf
t→∞

J(tφ0) < 0.

The proof of Theorem 1.1 is based on the ideas used in the works [4, 6]. As
mentioned earlier, a key ingredient is to show that (PS) sequences of J con-
verge (up-to a sub-sequence) if their minimax levels are below a certain level
(κ0 given in (1.6) in our case). Here we also use the concentration-compactness
principle due to [7, 8] (see also [17] and the references therein for further de-
velopments), which remains effective for the non-linear m-Laplacian operator
∆m. In our arguments, both the presence of the lower order term f(x, u) and
the behavior of the potential V (x) are crucial. To illustrate this notion, we
present three examples of existence, namely, Corollaries 4.1-4.3. In this regard,
existence of a positive solution can hold for suitable potentials V (x), even with
f(x, u) ≡ 0, see Corollary 4.3. On the other hand, three non-existence results
(Theorems 5.1-5.3) are established to further demonstrate the importance of
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the presence of the lower order term f(x, u) and the behavior of the potential
V (x) to existence.

We would like to use the following canonical model of (1.1) to illustrate our
results:

−∆mu + V (x)um−1 − buα − um∗−1 = 0, u > 0, in Rn,

where b ≥ 0 and α ∈ (m− 1,m∗ − 1) are constant. We consider several cases.
A) Take b = 1 and let R0 be the quantity given in Corollary 4.1. Set

V (x) =

{
h(x), |x| ≤ 2R0,

1, |x| > 2R0,

where h(x) is any real bounded measurable function. Then, by Corol-
lary 4.1, there exists ε > 0 such that (1.1) has a positive solution, as
long as

sup
x∈B2R0 (0)

|h(x)| < ε.

B) For µ > 0 and λ > m/2, let

V (x) = −µ(1 + |x|2)−λ.

Then, by Corollary 4.3, there exists ε > 0 such that (1.1) has a positive
solution, as long as

µ < ε, b = 0.

C) For µ > 0, let

V (x) = −µ(1 + |x|2)−m/2.

Then (1.1) has no positive solutions for any µ > 0 and b > 0. This is
a direct consequence of Theorem 5.3.

D) For applications of Theorem 5.3 to positive potentials, we take V (x) =
|x|−λ with λ ∈ [m,n). Note that Theorem 5.3 still applies, though the
differentiability of V needs to be modified slightly. Then, by Theo-
rem 5.3, (1.1) has no positive solutions for any b > 0.

E) Take b = 0 and V (x) =Const.> 0. Then, by Theorem 5.2, (1.1) has no
positive solutions.

Case E) is well-known. But, to the best knowledge of the author, Cases A)-
D) are new, even for the Laplacian operator (m = 2). It is worth adding that
similar arguments can be applied to derive multiplicity results of [6] and one
may treat hardy-type potentials V (x) by using the Hardy-Littlewood-Sobolev
inequalities.

The paper is organized as follows: we give some preliminary discussions in
Section 2. A local version of the (PS) condition is established for the func-
tional a corresponding to (1.1) in Section 3. In Section 4, we prove the main
Theorem 1.1 and its Corollaries 4.1-4.3. Finally, the proofs of non-existence
Theorems 5.1-5.3 are given in Section 5.
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2. Preliminaries

Let E be the Banach space introduced in Section 1. For convenience, we
write

L(u) =
∫

Rn

(|∇u|m + V |u|m), N(u) =
1

m∗

∫

Rn

H|u|m∗
, u ∈ E.

Plainly L(u) corresponds to the ‘linear’ part −∆mu + V um−1 of (1.1) and

J(u) =
1
m

L(u)−N(u)−
∫

Rn

F (x, u).

Recall for w ∈ E,
c = cw := inf

γ∈Γw

max
u∈γ

J(u),

where
Γw := {γ ∈ C([0, 1], E) | γ(0) = 0, γ(1) = w},

being the set of all continuous paths from the origin to w.
In order to obtain a positive solution, we need to modify the ‘non-linear’

part of J as follows

J1(u) =
1
m

L(u)−N(u+)−
∫

Rn

F (x, u+),

where u+ = max{u, 0}. It turns out that all the calculations below carried on J
equally apply to J1 and so do the results. Therefore, for notational convenience,
we shall remain working on the functional J , but later apply the results to J1

at a proper time.
The first result in this section is the following mountain-pass lemma without

the (PS) condition for J , due to Ambrosetti-Rabinowitz, see [1, 4].

Lemma 2.1 (Mountain-pass Lemma). Assume that there exist a neighborhood
U of the origin 0 in E, an element v ∈ E \ U and a constant ρ such that

(2.1) J |∂U ≥ ρ,

and

(2.2) J(0) < ρ, J(v) < ρ.

Then there is a sequence {uj} in E such that

(2.3) J(uj) → c = cv ≥ ρ, J ′(uj) → 0 in E∗.

Recall that a sequence {uj} in E satisfying

J(uj) → c, J ′(uj) → 0 in E∗

is called a (PS) sequence at level-c. The quantity c is then called a critical-level
of J .

It is well-known that the best constant

S = Sm = n
(n−m

m− 1

)m−1(Γ(n/m)Γ(n + 1− n/m)ωn−1

Γ(n + 1)

)m/n
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for the Sobolev embedding is achieved by the functions

φ(x) = (κ + |x|m/(m−1))(m−n)/m, i.e., S
(∫

Rn

|φ|m∗)m/m∗

=
∫

Rn

|∇φ|m,

where ωn−1 is the area of the sphere Sn−1 and κ > 0, see for example [2, 13].
The next lemma is the concentration-compactness principle due to Lions

([7, 8]). Without further mentioning, in the rest of the paper, all convergencies
may be up to a sub-sequence.

Lemma 2.2 (Concentration-compactness principle). Let {uj} be a bounded
sequence in E converging weakly and a.e. to some u0 ∈ E. Then there exist
two bounded non-negative measures λ and µ on Rn such that

(2.4) |∇uj |m ⇀ µ, |uj |m
∗

⇀ λ,

in the sense of measure. In addition, there exist an index set I and a set of
points {zi} ⊂ Rn (i ∈ I)such that

A) Either I is an empty set (then so is {zi}), or
B) There exists a positive integer N such that

either I = Z or I = {1, . . . , N},
where Z is the set of all natural numbers. Moreover, there exist two
corresponding sets of positive numbers {λi} and {µi} such that

(2.5) λ = |u0|m
∗

+
∑

i∈I

λiδzi , µ ≥ |∇u0|m
∗

+
∑

i∈I

µiδzi ,

where δz is the Dirac measure at z, and there holds

(2.6) Smλ
m/m∗

i ≤ µi, i ∈ I.

Remark. The quantity
∫
Rn |uj |m∗

is sometimes called the ‘energy’ level of uj .
It turns out that the limiting energy-level, limj→∞

∫
Rn |uj |m∗

, of the sequence
{uj} in Lemma 2.2 may split into three possible parts as follows:

1) (Regular Part) This part of energy is represented by the quantity∫
Rn |u0|m∗

.
2) (Singular Part) This part of energy is concentrated on the countable

set {zi} of finite singularities in terms of the Dirac measure.
3) (Escaping Part) Finally, part of energy may escape at infinity, which

is represented by

λ∞ = lim
R→∞

lim
j→∞

∫

Rn

|uj |m
∗
ηR,

where ηR is a suitable cut-off function at infinity, see Section 3 for
details.
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All three possibilities 1-3) above could occur. Moreover, the sequence {uj}
converges to u0 in Lm∗

(Rn) if and only if its limiting energy-level is given by
the regular part. That is, no energy is concentrated on finite singularities, or
escaping at infinity, see also [17] and the references therein.

To conclude this section, we show that every (PS) sequence of J is bounded in
E. In what follows, we use C to denote positive generical constants depending
only on structure constants, i.e., n, m, α, . . ., etc., which may vary from one
to another. For s > 0 and x ∈ Rn, denote Bs(x) the ball centered at x with
radius s.

Lemma 2.3. There exist d0, d1 > 0 depending only on the structural constants
such that

(2.7) ||u||m ≥ L(u) ≥ d0||u||m ≥ d1||u||m1 , u ∈ E.

Moreover, every (PS) sequence {uj} of J is bounded in E.

Proof. We first prove (2.7). For t > 0, write

V = (V − t)+ + t− (V − t)−.

Then we have∫

Rn

V |u|m =
∫

Rn

[(V − t)+ + t]|u|m −
∫

Rn

(V − t)−|u|m

≥
∫

Rn

[(V − t)+ + t]|u|m −
( ∫

Rn

(V − t)n/m
−

)m/n( ∫

Rn

|u|m∗)m/m∗

≥
∫

Rn

[(V − t)+ + t]|u|m − S−1
( ∫

Rn

(V − t)n/m
−

)m/n
∫

Rn

|∇u|m.(2.8)

We claim that there exist ε0 > 0 and t0 ∈ (0, τ0) such that

(2.9) Vt =
∫

Rn

(V − t)n/m
− < Sn/m − ε0, t ∈ (0, t0].

For simplicity, we restrict t ∈ (0, τ0). For R > 0, put

D = DR,t = Ωt ∩BR(0), T = TR,t = Ωt ∩ (Rn \BR(0)).

Clearly |T | → 0 as R → ∞ uniformly in t since Ωt ⊂ Ωτ0 has a finite volume.
Set

3ε0 := Sn/m − V
n/m
0 > 0.

Then there exists R0 > 0 such that

(2.10)
∫

T

(V − t)n/m
− ≤ C

∫

T

V
n/m
− + Ct|T | < ε0, R ≥ R0

uniformly for all t ∈ (0, τ0), since V− ∈ Ln/m(Rn). Fixing R = R0, one readily
infers that there exists t0 > 0 such that for t ∈ (0, t0],

(2.11)
∫

D

(V − t)n/m
− < V

n/m
0 + ε0 = Sn/m − 2ε0,
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since (V − t)n/m
− → V

n/m
− uniformly on Rn and D → Ω0 ∩ BR0(0) as t → 0.

Combining (2.10) and (2.11) immediately yields (2.9).
It follows that, by substituting (2.9) into (2.8),

L(u) =
∫

Rn

[|∇u|m + V |u|m]

≥
∫

Rn

|∇u|m +
∫

Rn

[(V − t0)+ + t0]|u|m − S−1V
m/n
t0

∫

Rn

|∇u|m

=
∫

Rn

[(V − t0)+ + t0]|u|m + (1− V
m/n
t0 S−1)

∫

Rn

|∇u|m

≥ t0

∫

Rn

|u|m + (1− V
m/n
t0 S−1)

∫

Rn

|∇u|m ≥ ε1||u||m1 ,(2.12)

since (V − t0)+ ≥ 0, where

ε1 = min{t0, (1− V
m/n
t0 S−1)} > 0.

On the other hand, by definition

L(u) = ||u||m −
∫

Rn

V−|u|m

≥ ||u||m − V0

( ∫

Rn

|u|m∗)m/m∗

≥ ||u||m − V0S
−1

∫

Rn

|∇u|m ≥ (1− V0S
−1)||u||m.(2.13)

Now (2.7) follows from (2.12)-(2.13) immediately since

1− V0S
−1 > 0, ||u||m ≥ L(u).

Next let {uj} be a (PS) sequence at level-c. Then

J(uj) = c + o(1), J ′(uj)uj = o(||uj ||).
By assumption, there exists a positive number α1 ∈ (m,m∗) such that

uf(x, u) ≥ α1F (x, u).

It follows that, with the aid of (2.7),

α1c + o(1) + o(||uj ||) = α1J(uj)− J ′(uj)uj

=
α1 −m

m
L(uj) + (m∗ − α1)N(uj)

+
∫

Rn

[ujf(x, uj)− α1F (x, uj)]

≥ α1 −m

m
L(uj) ≥ C||uj ||m.

The conclusion of the lemma follows immediately. ¤
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3. Convergence of (PS) sequences

In this section, we prove the following convergence theorem.

Theorem 3.1. There exists a positive number c0 = c0(n, m,α1, α2, β, τ0,H0) >
0 such that every (PS) sequence {uj} of J at a critical-level c converges in
Lm∗

(Rn), provided

(3.1) c < c0.

Before proving Theorem 3.1, we establish some estimates in the following
two technical lemmas. Let {uj} be a bounded (PS) sequence in E and so
Lemma 2.2 applies. We use the same notations from Section 2. We first give a
lower bound for λi values in (2.5).

Lemma 3.1. Assume I 6= ∅ in Lemma 2.2. Then there holds

(3.2) H(zi) > 0, λi ≥ (S/H(zi))n/m ≥ (S/H0)n/m, i ∈ I.

In particular, the set I is finite.

Proof. Let η ∈ C∞([0,∞)) be a standard cut-off function on [0, 1], that is,

η(t) ≡ 1, t ∈ [0, 1]; η(t) ≡ 0, t > 2; |η′(t)| ≤ C, 0 ≤ η(t) ≤ 1

for some C > 0. Fix i ∈ I. For ε > 0, put

ηε = η(|x− zi|/ε), B = B2ε(zi), T = Tε = B \Bε(zi).

Apply J ′(uj) to the test function ujηε to obtain

J ′(uj)(ujηε) =
∫

Rn

|∇uj |mηε +
∫

Rn

uj |∇uj |m−2∇uj∇ηε

+
∫

Rn

V |uj |mηε −
∫

Rn

f(x, uj)(ujηε)−
∫

Rn

H|uj |m
∗
ηε.(3.3)

We shall estimate the right hand-side of (3.3) term by term.
By definition, a direct computation yields

||ujηε|| =
(∫

Rn

(|∇(ujηε)|m + V 0|ujηε|m)
)1/m

≤ C||uj || = O(1).

Hence

(3.4) J ′(uj)(ujηε) = o(||ujηε||) = o(1)

since {uj} is a (PS) sequence. By Lemma 2.2,

(3.5)
∫

Rn

|∇uj |mηε → µ′i ≥ µi.

Clearly,

|∇ηε| ≤ C/ε, |∇ηε| = 0 for x 6∈ T,

∫

T

1 = |T | = cnεn,
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where |T | is the volume of T . Hence we apply the Hölder inequality and
Lemma 2.2 to derive∣∣∣

∫

Rn

uj |∇uj |m−2∇uj∇ηε

∣∣∣

≤ Cε−1

∫

T

|∇uj |m−1|uj |

≤ Cε−1
( ∫

T

1n
)1/n( ∫

T

|∇uj |m
)(m−1)/m( ∫

T

|uj |m
∗)1/m∗

≤ Cε−1(εn)1/n
( ∫

Rn

|∇uj |m
)(m−1)/m( ∫

T

|uj |m
∗)1/m∗

≤ C
( ∑

i∈I′
λi +

∫

T

|u0|m
∗)1/m∗

+ o(1) = O(1),

where I ′ = I ′ε is the subset of I satisfying

{zi | i ∈ I ′} = {zi | i ∈ I} ∩ T.

We claim that

(3.6)
∑

i∈I′
λi = o(1) as ε → 0+.

This is trivial if I is finite (then I ′ is empty for all small ε > 0). If I = Z, then
we assert that

lim
ε→0+

min
i∈I′

i = ∞.

Suppose the contrary, then there exists i0 > 0 such that i0 ∈ I ′ for all ε > 0.
In turn, zi0 ∈ T for all ε > 0. This is impossible in view of the definition of T .
It follows that, since the series

∑
i∈I λi converges, (3.6) necessarily holds (cf.,

the tail of a convergent series).
On the other hand, plainly, as ε → 0+,∫

B

(|u0|m
∗

+ |∇u0|m) = o(1).

Thus in fact

(3.7)
∫

Rn

uj |∇uj |m−2∇uj∇ηε = o(1).

Using the Hölder inequality, we have
(3.8)∣∣∣

∫

Rn

V |uj |mηε

∣∣∣ ≤
( ∫

B

|V |n/m
)m/n( ∫

B

|uj |m
∗)m/m∗

= o(1)O(||uj ||) = o(1),

since V ∈ L
n/m
loc (Rn). By the Hölder inequality again, for all σ ∈ [0,m∗), one

has ∫

B

|uj |σ ≤ |B|1−σ/m∗( ∫

Rn

|uj |m
∗)σ/m∗

= o(1).
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Hence, by assumption, there holds

(3.9)
∫

Rn

f(x, uj)(ujηε) ≤ β

∫

Rn

(|uj |α1 + |uj |α2)ηε = o(1),

where α1, α2 ∈ (m,m∗). Using the continuity of H(x) and Lemma 2.2, and
passing to the limit by first letting j →∞ and then letting ε → 0+, we have

(3.10) lim
j→∞

∫

Rn

H|uj |m
∗
ηε = H(zi)λi.

Combining (3.4)-(3.5) and (3.7)-(3.10) into (3.3), we infer that for each fixed
i ∈ I

µi −H(zi)λi ≤ 0.

Utilizing (2.6), we finally arrive at

Sλ
m/m∗

i −H(zi)λi ≤ 0.

Clearly H(zi) > 0, since λi > 0. Thus (3.2) follows and the proof is complete.
¤

For R > 0, put

ηR = η(2R/|x|), D = DR = Rn \BR(0), T = TR = B2R(0) \BR(0).

Denote

µ∞ = lim
R→∞

lim
j→∞

∫

Rn

|∇uj |mηR, V∞ = lim
R→∞

lim
j→∞

∫

Rn

V |uj |mηR,

F∞ = lim
R→∞

lim
j→∞

∫

Rn

ujf(x, uj)ηR,

and

λ∞ = lim
R→∞

lim
j→∞

∫

Rn

|uj |m
∗
ηR, λ′∞ = lim

R→∞
lim

j→∞

∫

Rn

H|uj |m
∗
ηR.

Note that all five limits are non-negative. For k = 1, 2, put

ak =
m∗ − αk

m∗ −m
∈ (0, 1), bk =

αk −m

m∗ −m
∈ (0, 1); ak + bk = 1.

Then we have the following estimates.

Lemma 3.2. There holds

(3.11) µ∞ + V∞ ≤ H0λ∞ + β

2∑

k=1

(V∞/τ0)akλbk∞.

If in addition λ∞ > 0, then there exists C = C(n,m,α1, α2, β, τ0,H0) > 0 such
that

(3.12) µ∞ ≥ Sλm/m∗
∞ ≥ C.
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Proof. The proof is essentially the same as that of Lemma 3.1. Applying J ′(uj)
to the test function ujηR, we obtain

(3.13) µ∞ + V∞ = λ′∞ + F∞.

To show (3.11), we shall bound F∞ in terms of V∞ and λ∞.
By the Hölder inequality, we have

∫

Rn

(V − τ0)−|uj |mηR ≤
( ∫

D

(V − τ0)
n/m
−

)m/n( ∫

Rn

|uj |m
∗)(n−m)/n

= o(1),

since (V − τ0)− ∈ Ln/m(Rn). In turn
∫

Rn

V |uj |mηR =
∫

Rn

[(V − τ0)+ + τ0]|uj |mηR −
∫

Rn

(V − τ0)−|uj |mηR

=
∫

Rn

[(V − τ0)+ + τ0]|uj |mηR + o(1).

It follows that

(3.14) V∞ = lim
R→∞

lim
j→∞

∫

Rn

V (x)|uj |mηR ≥ τ0 lim
R→∞

lim
j→∞

∫

Rn

|uj |mηR.

By assumption (F), there holds

0 ≤ f(x, uj)uj ≤ β(|uj |α1 + |uj |α2),

where α1, α2 ∈ (m,m∗). It follows that, with the aid of the Hölder inequality
∫

Rn

f(x, uj)(ujηR) ≤ β

∫

Rn

(|uj |α1 + |uj |α2)ηR

≤ β

2∑

k=1

( ∫

Rn

|uj |mηR

)ak
(∫

Rn

|uj |m
∗
ηR

)bk

.(3.15)

Combining (3.14) and (3.15) yields

(3.16) F∞ ≤ β

2∑

k=1

(V∞/τ0)akλbk∞.

Plainly

(3.17) λ′∞ ≤ H0 lim
R→∞

lim
j→∞

∫

Rn

|uj |m
∗
ηR = H0λ∞.

Substituting (3.16) and (3.17) into (3.13) yields (3.11).
To prove (3.12), we apply the Sobolev embedding to ujηR to obtain

Sλm/m∗
∞ = S lim

R→∞
lim

j→∞

(∫

Rn

|ujηR|m
∗)m/m∗

≤ lim
R→∞

lim
j→∞

∫

Rn

|∇(ujηR)|m = µ∞.
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This is (3.12)1. Using the above inequality, (3.12)2 follows from (3.11) and
the Young inequality with the aid of the fact ak ∈ (0, 1), and ak + bk = 1,
k = 1, 2. ¤

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let {uj} be a (PS) sequence of J at level-c. By Lemma
2.3, {uj} is bounded in E. Hence, without loss of generality, we may assume
that {uj} converges weakly and a.e. to some u0 ∈ E. We want to show that
the singular part and escaping part of the limiting energy-level of the sequence
{uj} are trivial, provided (3.1) is satisfied. This would in turn ensure the
convergence of {uj} in Lm∗

(Rn).
We first claim

(3.18) λ∞ = µ∞ = F∞ = V∞ = 0, I = ∅.
By the compact Sobolev embedding, we have for any fixed R > 0 and α ∈
(0,m∗)

lim
j→∞

∫

B

|uj |α =
∫

B

|u0|α,

where B is ball with radius R. Hence

lim
j→∞

∫

Rn

ujf(x, uj) =
∫

Rn

u0f(x, u0) + F∞.

By Lemma 2.2

lim
j→∞

∫

Rn

H|uj |m
∗

= λ′∞ +
∑

i∈I

H(zi)λi +
∫

Rn

H|u0|m
∗
.

It follows that

c + o(1) = J(uj)− 1
m

J ′(uj)uj

=
1
m

∫

Rn

[ujf(x, uj)−mF (x, uj)] + m′
∫

Rn

H|uj |m
∗

≥ α′
∫

Rn

ujf(x, uj) + m′
∫

Rn

H|uj |m
∗

= α′
∫

Rn

u0f(x, u0) + m′
∫

Rn

H|u0|m
∗

+ m′(λ′∞ +
∑

i∈I

H(zi)λi) + α′F∞ + o(1)

≥ m′∑

i∈I

H(zi)λi + α′(λ′∞ + F∞) + o(1)

≥ m′∑

i∈I

H(zi)λi + α′µ∞ + o(1),(3.19)
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where we have used the fact λ′∞ + F∞ = µ∞ + V∞ ≥ µ∞, and

m′ =
m∗ −m

mm∗ > α′ =
α1 −m

mα1
> 0.

Take

(3.20) c0 = min{α′C, m′Sn/mH
(m−n)/m
0 } > 0,

where the constant C > 0 is given in (3.12). Suppose the contrary λ∞ > 0,
then one has, by (3.2) and (3.19),

c ≥ α′µ∞ ≥ α′C = c0,

a contradiction to the assumption c < c0. Hence λ∞ = 0. Using this fact, one
immediately infers µ∞ = V∞ = 0 by (3.11) and F∞ = 0 by (3.16), respectively.
Similarly, one deduces I = ∅ using (3.2), (3.19) and the definition of c0.

Now with (3.18) available, one uses Lemma 2.2 to derive

lim
j→∞

∫

Rn

|uj |m
∗

=
∫

Rn

|u0|m
∗
.

In turn (see e.g. [4])

lim
j→∞

∫

Rn

|uj − u0|m
∗ → 0,

since uj → u0 a.e. on Rn. The proof is complete. ¤

4. The existence results

In this section, we use the mountain-pass Lemma 2.1 and the convergence
Theorem 3.1 to prove the existence Theorem 1.1. We also present three corol-
laries of Theorem 1.1.

Proof of Theorem 1.1. By definition and assumptions, there holds

J(u) ≥ 1
m

L(u)− β

∫

Rn

(|u|α1 + |u|α2)− H0

m∗

∫

Rn

|u|m∗

≥ 2d||u||m + 2d||u||m1 − 2d

∫

Rn

|u|m − C

∫

Rn

|u|m∗ ≥ 2d||u||m − C||u||m∗
,

where d = d(m, d0, d1) > 0 and we have used (2.7) and the Young inequality

|u|αk ≤ d|u|m + Ck|u|m
∗
, k = 1, 2.

Let r0 > 0 be the positive solution of

2drm
0 − Crm∗

0 = drm
0 .

Now taking ρ = drm
0 > 0 and U the ball centered at the origin with radius r0

verifies (2.1).
Take κ0 = c0, where c0 is the quantity given in Theorem 3.1. By assumption,

there exists φ0 ∈ E with φ0 6= 0 such that

max
t≥0

J(tφ0) < κ0 = c0, lim inf
t→∞

J(tφ0) < 0.
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Plainly, there exists t0 > 0 such that

J(t0φ0) ≤ 0 with ||t0φ0|| > r0.

Set
v(x) = t0φ0(x).

Then v(x) together with J satisfies the requirements of Lemma 2.1 and the
inequality

(4.1) c = cv < c0.

Let {uj} be a (PS) sequence at level-c guaranteed by Lemma 2.1. Then by
Lemma 2.3, {uj} is bounded and converges weakly and a.e. to some u0 ∈ E.
Using a test function in C∞0 (Rn), one passes the limit in J ′(uj) → 0 to conclude
that u0 is a (weak) solution of (1.1). In particular,

(4.2)
∫

Rn

|∇u0|m =
∫

Rn

[u0f(x, u0) + H|u0|m
∗ − V |u0|m].

By Theorem 3.1, with the aid of (4.1), we have

lim
j→∞

∫

Rn

|uj − u0|m
∗

= 0.

Moreover, Theorem 3.1 implies

λ∞ = µ∞ = F∞ = V∞ = 0, I = ∅.
In turn

lim
j→∞

∫

Rn

V |uj − u0|m = 0, lim
j→∞

∫

Rn

ujf(x, uj) =
∫

Rn

u0f(x, u0).

It follows that

0 = lim
j→∞

J ′(uj)uj

= lim
j→∞

∫

Rn

|∇uj |m + lim
j→∞

∫

Rn

(V |uj |m − ujf(x, uj)−H|uj |m
∗
)

= lim
j→∞

∫

Rn

|∇uj |m +
∫

Rn

[V |u0|m − u0f(x, u0)−H|u0|m
∗
].

That is, with the aid of (4.2),

lim
j→∞

∫

Rn

|∇uj |m =
∫

Rn

|∇u0|m.

Therefore
J(u0) = lim

j→∞
J(uj) = c > 0,

in view of (2.1) with ρ = drm
0 > 0. Hence u0 6= 0.

We claim u0 > 0. Recall that all the results above apply to the modified
functional J1. In turn, u0 can be simply seen a critical point of J1 (i.e., replacing
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J by J1 if one will). Thus, applying J ′1(u0) to u−0 yields (noting that modified
‘non-linear’ parts of J1 vanish on the support of u−0 )

0 = J ′1(u0)u−0 = L(u−0 ) =
∫

Rn

(|∇u−0 |m + V |∇u−0 |m) ≥ ||u−0 ||m,

where u−0 denotes the negative part of u0. It follows that u0 ≥ 0. Now the
strong maximum principle implies u0 > 0. This completes the proof. ¤

Next we present several sufficient conditions to ensure the validity of the key
assumption (1.5) of Theorem 1.1, which in turn gives rise to existence. The
presence of the lower order term f(x, u) as well as the behavior of the potential
V (x) are crucial to the arguments. In the remaining of this section, we assume
that there exists α3 ∈ (m, m∗) such that

(4.3) F (x, u) ≥ |u|α3/β, (x, u) ∈ Rn+1.

For convenience, put

I(u) :=
1
m

L(u)− 1
α3

M(u), M(u) :=
α3

β

∫

Rn

|u|α3 .

Clearly
J(u) ≤ I(u).

Set

δ =
α3

α3 −m
> 0, γ =

m

α3 −m
> 0, σ = nγ − (n−m)δ > 0.

For u 6= 0, by direct computations

(4.4) max
t≥0

I(tu) =
1

mδ
Lδ(u)M−γ(u).

The following existence is an immediate corollary of Theorem 1.1.

Corollary 4.1. Suppose that the conditions of Theorem 1.1 are valid. Then
there exists a positive number R0 = R0(n,m,α1, α2, β, α3, τ0,H0) such that
(1.1) admits a positive solution, provided

(4.5) L(ξR1) =
∫

Rn

[|∇ξR1 |m + V ξm
R1

] ≤ (R1/R0)σ/δ

∫

Rn

|∇ξR1 |m

for some R1 ≥ R0, where ξR = η(|x|R−1) for R > 0 (recall the definition of η
from Section 3).

Proof. The idea is to construct a non-negative function φ0 so that the pair
(φ0, c0) satisfy (1.5), where c0 = c0(n,m, α1, α2, β, τ0,H0) is given in Theo-
rem 3.1.

For R > 0, put

g(R) =
1

mδ

( ∫

Rn

|∇ξR|m
)δ

M−γ(ξR).
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Direct computations yield∫

Rn

|∇ξR|m ≤ CRn−m, M(ξR) = CRn,

where C = C(n) > 0 is constant. It follows that there exists C = C(n, m, δ, γ)
> 0 such that

(4.6) g(R) ≤ CR−σ.

Moreover, a simple calculation reveals for R2, R1 > 0

(4.7) Rσ
2 g(R2) = Rσ

1 g(R1).

Take

(4.8) R0 = (Cc−1
0 )1/σ,

where the constant C > 0 is given in (4.6). Let R1 ≥ R0 be the constant given
in the assumption. Then we have, with the aid of (4.4)-(4.8),

max
t≥0

J(tξR1) ≤ max
t≥0

I(tξR1) =
1

mδ
Lδ(ξR1)M

−γ(ξR1)

≤ (R1/R0)σ

mδ

( ∫

Rn

|∇ξR1 |m
)δ

M−γ(ξR1)

= (R1/R0)σg(R1) = g(R0) ≤ CR−σ
0 = c0.

On the other hand, there holds

lim
t→∞

J(tξR1) ≤ lim
t→∞

I(tξR1) = lim
t→∞

( tm

m

∫

Rn

|∇ξR1 |m − tα3

β

∫

Rn

ξα3
R1

)
= −∞,

since α3 > m. Evidently the pair (φ0, κ0) = (ξR1 , c0) satisfies (1.5) of Theo-
rem 1.1. Hence Theorem 1.1 applies and (1.1) has a positive solution. ¤

The next result is a direct generalization of Theorem 1.1 of [6]. Consider

(4.9)
−ε∆mu + V (x)um−1 − f(x, u)−H(x)um∗−1 = 0 in Rn

u → 0 as |x| → ∞,

where ε > 0 is a parameter.

Corollary 4.2. Suppose that the conditions of Theorem 1.1 are valid. Assume
that there exists x0 ∈ Rn such that V is continuous at x0 and

V (x0) ≤ 0.

Then there exists a positive number ε0 = ε0(n,m, α1, α2, β, α3, τ0,H0, V ) such
that (4.9) admits a positive solution for all ε < ε0.

Proof. The proof is essentially the same as that of Corollary 4.1. Namely, we
want to construct φ0 so that the pair (φ0, κ0) verifies (1.5). Without loss of
generality, assume x0 = 0. Then for σ > 0, there exists a positive number
ρ = ρ(σ) > 0 such that

(4.10) V (x) < σ + V (0) ≤ σ, |x| < 2ρ.
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Denote
φρ = η(|x|/ρ), Vρ = sup

|x|<2ρ

V (x).

Then there exists C = C(n) > 0 such that
∫

Rn

|∇φρ|m = Cρn−m,

∫

Rn

V |φρ|m ≤ CVρρ
n,

and

M(φρ) =
α3

β

∫

Rn

|φρ|α3 =
Cα3

β
ρn.

It follows that
1

mδ

(
ε

∫

Rn

|∇φρ|m +
∫

Rn

V |φρ|m
)δ

M−γ(φρ) ≤ C(ερ−m + Vρ)

for some C = C(n,m, β, α3) > 0. Choose

σ0 =
1
2
c0/C > 0,

where c0 = c0(n, m,α1, α2, β, τ0,H0) is given in Theorem 3.1. Fix ρ0 > 0 such
that (4.8) holds with σ = σ0 and ρ = ρ0. Now take

ε0 =
1
2
c0ρ

m
0 /C > 0 =⇒ C(ε0ρ

−m
0 + σ0) = c0.

Note that (4.4) remains valid for (4.7) with

L(u) = ε

∫

Rn

|∇u|m +
∫

Rn

V |u|m.

Hence for ε < ε0, one infers that,

max
t≥0

I(tφρ0) ≤ max
t≥0

I(tφρ0) =
1

mδ
Lδ(φρ0)M

−γ(φρ0)

≤ C(ερ−m
0 + Vρ0) < C(ε0ρ

−m
0 + σ0) = c0,

since Vρ0 ≤ σ0 by (4.8). Now the pair (φ0, κ0) = (φρ0 , c0) verifies (1.5) and the
proof is complete by Theorem 1.1. ¤

As mentioned earlier in the Introduction, the lower order perturbation term
f(x, u) plays a key role in the existence results. Indeed, Theorem 5.2 in
Section 5, which shows that (1.1) has no positive solutions in general when
f(x, u) ≡ 0, only enforces this notion. Corollary 4.3 below, however, indicates
that (1.1) may still have positive solutions even with f(x, u) ≡ 0. In turn,
this illustrates the critical importance of the behavior of the potential function
V (x). Also note that, in Corollary 4.3, the potential function V (x) need not
satisfy the condition (V), which is required for all Theorems 1.1 and 3.1, and
Corollaries 4.1 and 4.2.
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Corollary 4.3. Assume f ≡ 0 and H ≡ 1. Suppose that V ∈ Ln/m(Rn) ∩
L∞loc(R

n) satisfies

V0 =
( ∫

Rn

V
n/m
−

)m/n

< S,

∫

Rn

V φm < 0,

where

φ(x) = (κ + |x|m/(m−1))(m−n)/m,

∫

Rn

φm∗
= 1,

∫

Rn

|∇φ|m = S.

Then (1.1) admits a positive solution.

Proof. The proof is essentially the same as that of Theorem 1.1, with the excep-
tion that one should work on the space D1,m(Rn). Namely, it is the completion
of all compactly supported smooth functions on Rn under the Dirichlet norm

||u|| :=
( ∫

Rn

|∇u|m
)1/m

.

Then the previous arguments carry over with little change (see [7, 8] for the
concentration-compactness principle for the space D1,m(Rn)). Indeed, argu-
ments of Lemma 3.1 directly imply

(4.11) min
i
{λi} ≥ Sn/m,

provided I 6= ∅. On the other hand, to apply Lemma 3.2, we note that

F∞ = 0, λ′∞ = λ∞, H0 = 1.

Thus, one has

(4.12) µ∞ + V∞ = λ∞, µ∞ ≥ Sλm/m∗
∞ .

By definition, one readily sees

|V∞| = lim
R→∞

lim
j→∞

∣∣∣
∫

Rn

V |ujηR|m
∣∣∣

≤ lim
R→∞

lim
j→∞

( ∫

|x|>R

|V |n/m
)m/n( ∫

Rn

|uj |m
∗)m/m∗

= 0.(4.13)

Combining (4.12) and (4.13) yields

(4.14) λ∞ ≥ Sn/m,

provided λ∞ > 0. Using the assumption, direct computations show

max
t≥0

J(tφ) =
1
n

Ln/m(φ) <
1
n

( ∫

Rn

|∇φ|m
)n/m

=
Sn/m

n
.

Now choose

c0 = m′Sn/m =
Sn/m

n
.

Then Theorem 3.1 applies and the pair (φ0, κ0) = (φ, c0) verifies (1.5). Thus the
conclusion follows from Theorem 1.1 and the details are left to the interested
reader. ¤
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5. The non-existence results

All results established in the previous section indeed show that both the
presence of the lower order term f and the behavior of the potential V (x) are
crucial for the existence. To further enforce such a notion, here we present
three non-existence results. We shall assume none of the conditions (V), (F)
and (H). For simplicity, we shall also assume all solutions treated in this section
are C1.

The first non-existence result is when V (x) becomes non-positive for large
|x|’s (and the lower order perturbation f(x, u) has a low exponent).

Theorem 5.1. Assume that there exist positive numbers C > 0, R > 0 and

m− 1 ≤ α ≤ (m− 1)n
n−m

such that there holds for u > 0 sufficiently small and |x| > R,

−V (x)um−1 + f(x, u) ≥ Cuα.

Then (1.1) does not admit any non-negative non-trivial solutions.

Theorem 5.1 is due to [3] (see also [12]), in view of the boundary conditions

lim
|x|→∞

u(x) = 0.

Theorem 5.2 below is a non-existence result when f(x, u) ≡ 0.

Theorem 5.2. Assume that the functions f(x, u), V (x) and H(x) satisfy the
following conditions.

A) H(x) ∈ C1(Rn) and there holds

f(x, u) ≡ 0, sup
x∈Rn

x · ∇H(x) ≤ 0, sup
x∈Rn

|H(x)| < ∞.

B) There exist positive constants R0 > 0 and K0 > 0 such that

K−1
0 ≤ V (x) ≤ K0 for |x| > R0.

C) C(x) ∈ C1(Rn) and there holds

(|x|mV (x))′ > 0 in R
n,

where ′ is the derivative with respect to the radius |x|.
Then (1.1) does not admit any non-negative non-trivial solutions u ∈ E.

The next non-existence, however, reflects the importance of the behavior of
the potential V on existence, even with the presence of f .

Theorem 5.3. Assume that the functions f(x, u), V (x) and H(x) satisfy the
following conditions.

A) H(x) ∈ C1(Rn) and there holds

sup
x∈Rn

x · ∇H(x) ≥ 0; H = O(1) and ∇H = O(1) as |x| → ∞.
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B) C(x) ∈ C1(Rn) and there holds

(|x|mV (x))′ ≤ 0 in Rn, V = O(|x|−m) and ∇V = O(|x|−m−1) as |x| → ∞.

C) f(x, u) ∈ C1(Rn × R) and there exist Λ > 0 and m∗ > α′ ≥ α >
m(n− 1)/(n−m) such that

Λ−1uα−1 ≤ f(x, u) ≤ Λuα−1 for x ∈ Rn and u > 0,

and

inf
x∈Rn,u>0

x · ∇xF (x, u) ≥ 0, ∇xf(x, u) = O(|x|−1f(x, u)),

and

(α′ − 1)f(x, u)− ufu(x, u) ≥ 0 =⇒ α′F (x, u)− uf(x, u) ≥ 0.

Then (1.1) does not admit any non-negative non-trivial solutions.

Remark. Note Theorem 5.3 applies to arbitrary non-negative solutions (not
necessarily in E).

The proofs of Theorems 5.2 and 5.3 are based on the asymptotic estimates
at infinity for positive solutions of (1.1) and the Pohozaev identity for (1.1).

Lemma 5.1. Assume the conditions of Theorem 5.2 hold. Then there exist
positive constants C = C(n,m, V0) > 0 and R = R(H,u) > 0 such that for
|x| > R

(5.1) u(x) ≤ C|x|−(n+m)/m, |∇u(x)| ≤ C|x|−(n+m)/m

for all positive solutions u ∈ E of (1.1).

Proof. For u ∈ E, without loss of generality, we assume

(5.2) Hum∗−m(x) < K−1
0 /2, |x| > R0,

since u → 0 as |x| → ∞. For u ∈ E and R > 2K, multiply (1.1) by the test
function uηm

R and integrate to obtain∫

Rn

|∇u|mηm
R +

∫

Rn

V |u|mηm
R ≤ M

∫

Rn

|u|m|∇ηR|m ≤ MR−m,

where M = M(K0,m) > 0 is constant and ηR = η(R/|x|), and we have used
(5.2) and the Young inequality. Hence

(5.3)
∫

Rn

|u|mηR ≤ K0

∫

Rn

V |u|mηR ≤ MK0R
−m, R > 2R0.

On the other hand, by (5.2) again, we have

∆mu ≥ 0, u > 0 for |x| > R0.

Hence the classical Harnack inequality (see [11, 15]) together with (5.3) implies

sup
B

u(x) ≤
( C

|B|
∫

B

|u|m
)1/m

≤ (CMK0)1/m|z|−(n+m)/m,
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where C = C(m,n) > 0 is constant and B = B|z|(z) with |z| > 3R0. This
yields (5.1)1 with R = 2R0. Using standard point-wise gradient estimates (see
[5, 14]), one derives (5.1)2 from (5.1)1. ¤

To derive the asymptotic estimates under conditions of Theorem 5.3, we
need the following Gidas-Spruck type inequality.

Lemma 5.2. Let u be a positive C1-solution of

−∆mu + V (x)um−1 − f(x, u)−H(x)um∗−1 = 0 in Rn.

Let φ ∈ C∞0 (Rn) be a non-negative test function. Then for any d ∈ R there
holds

∫

Rn

φu1−m∗−d|∇u|m[Af(x, u) + A1ufu(x, u)− (A + (m− 1)A1)V um−1]

(5.4)

+ (A + (m∗ − 1)A1)
∫

Rn

φu1−m∗−d|∇u|mHum∗−1 + B

∫

Rn

φu−m∗−d|∇u|2m

+ A1

∫

Rn

φu1−m∗−d|∇u|m−2∇u[u∇xf(x, u)− um∇V + um∗∇H]

≤
∫

Rn

u1−m∗−d[D(uf(x, u)− V um + Hum∗
) + D1|∇u|m]|∇u|m−2∇u · ∇φ

+
∫

Rn

u2−m∗−d(∇u∇2φ∇u)|∇u|2m−4,

where m∗ = m(n − 1)/(n −m), D and D1 are constants, ∇2φ is the Hessian
of φ and

A =
n− 1

n

(
1− d

m∗

)
(m∗ − 1), A1 = −n− 1

n
, B =

m− 1
m

d(1− d).

This is precisely Proposition 6.1 of [12], by replacing f(u) there by

g(x, u) = f(x, u) + Hum∗−1 − V um−1.

Utilizing Lemma 5.2, we have the following asymptotic estimates.

Lemma 5.3. Assume all conditions of Theorem 5.3 hold. Then there exist
constants C > 0 and R > 0 such that

(5.5) u(x) = O(|x|−m/(α−m)), ∇u(x) = O(|x|−α/(α−m)); |x| > R,

for all positive solutions of (1.1).

Proof. The proof is essentially the same as that of Theorem IV of [12]. We
only sketch the proofs and the interested reader may find the details in [12].

Step 1. Use Lemma 5.2 to derive the key estimate∫

Rn

ηk
Ru2−m∗−df2(x, u) ≤ CR−2m

∫

Rn

ηk−2m
R u2m−m∗−d

+ CRn−m(2α−m∗−d)/(α−m),(5.6)
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where ηR = η(|x−z|/R) with |z| = 3R > 0 large. The arguments (Lemma 3.2)
of [12] carry over, since all additional terms appeared in (5.4) can be prop-
erly dominated for |x| > 0 large by using the assumptions and the boundary
condition

lim
|x|→∞

u(x) = 0.

Also note

Af(x, u) + A1ufu(x, u)− (A + (m− 1)A1)V um−1 ≥ Cf(x, u).

We leave the details to the reader.

Step 2. Use the estimate (5.6) and the fact

f(x, u)− V um−1 + Hum∗−1 > 0, |x| >> 1,

to derive ∫

Rn

ηk
Ru2−m∗−df2(x, u) ≤ CRn−m(2α−m∗−d)/(α−m)

for R > 0 large, see (3.17) of [12].

Step 3. Derive the Harnack inequality

sup
x∈B

u(x) ≤ C inf
x∈B

u(x),

where B = BR(z) with |z| = 3R > 0 large. Again the arguments of Theorem 4.2
of [12] carry over by using the assumptions and the results in Step 2.

Step 4. (5.5)1 follows from Steps 2 and 3 immediately, while (5.5)2 follows
from the standard gradient point-wise estimates, with the aid of (5.5)1. ¤

Finally, we also use the following well-known Pohozaev type identity.

Lemma 5.4. Let B = BR(0) be the ball centered at the origin with radius
R > 0 and let u be a solution of

−∆mu + V (x)|u|m−2u− f(x, u)−H(x)|u|m∗−2u = 0 in B.

Then there holds
1
m

∫

B

|x|1−m|u|m(|x|mV )′ − 1
m∗

∫

B

(x · ∇H)|u|m∗

−
∫

B

x · ∇xF (x, u) + n

∫

B

[uf(x, u)/m∗ − F (x, u)]

=
∫

∂B

|x|(|∇u|m/m + V |u|m/m−H|u|m∗
/m∗ − F (x, u))

−
∫

∂B

|x|−1|∇u|m−2[(x · ∇u)2 + (n−m)(x · ∇u)u/m].
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Lemma 5.4 follows directly from Proposition 1 of [9] by taking Ω = B and

F(x, u, p) =
1
m
|p|m +

1
m

V |u|m−F (x, u)− 1
m∗H|u|m∗

, h(x) = x, a =
n−m

m
.

Now we are ready to prove Theorems 5.2 and 5.3.

Proof of Theorem 5.2. We argue by contradiction. Let u ≥ 0 be a non-trivial
E-solution of (1.1), then u is strictly positive by the classical strong maximum
principle, see [16]. By (5.1) and the assumptions, one readily infers that

lim
R→∞

∫

∂B

|x|(|∇u|m/m + V |u|m/m−H|u|m∗
/m∗) = lim

R→∞
O(R−m) = 0,

and

lim
R→∞

∫

∂B

|x|−1|∇u|m−2[(x ·∇u)2 +(n−m)(x ·∇u)u/m] = lim
R→∞

O(R1−m) = 0.

With the help of Lemma 5.4, one then deduces
1
m

∫

Rn

|x|1−m|u|m(|x|mV )′ − 1
m∗

∫

Rn

(x · ∇H)|u|m∗
= 0.

In turn ∫

Rn

|x|1−m|u|m(|x|mV )′ = 0 =⇒ u(x) ≡ 0, x ∈ Rn.

This is a contradiction and completes the proof. ¤

Proof of Theorem 5.3. The proof is similar to that of Theorem 5.2. By (5.5)
and the assumptions, one readily infers that

lim
R→∞

∫

∂B

|x|(|∇u|m/m + V |u|m/m−H|u|m∗
/m∗ − F (x, u))

= lim
R→∞

O(Rn−mα/(α−m)) = 0,

since n−mα/(α−m) < 0 and

lim
R→∞

∫

∂B

|x|−1|∇u|m−2[(x · ∇u)2 + (n−m)(x · ∇u)u/m]

= lim
R→∞

O(Rn−mα/(α−m)) = 0.

Hence by Lemma 5.4, we infer that there exists C > 0 such that

C

∫

Rn

uα ≤ C

∫

Rn

F (x, u) ≤ n

∫

Rn

[F (x, u)− uf(x, u)/m∗]

=
∫

Rn

[|x|1−m|u|m(|x|mV )′/m− (x · ∇H)|u|m∗
/m∗ − x · ∇xF (x, u)]

≤ 0,

since the integrand is non-positive. Hence

u(x) ≡ 0, x ∈ Rn,



572 HENGHUI ZOU

again a contradiction. ¤
To conclude this section, we would like to point out that one readily produces

concrete examples which verify conditions given in Corollaries 4.1-4.3, and in
Theorems 5.1-5.3, giving rise to existence and non-existence accordingly.

Acknowledgement. The author wishes to thank the referee(s) for their care-
ful reading of the manuscript and their useful comments.
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