DOI QR코드

DOI QR Code

Application of the JMA instrumental intensity in Korea

일본 기상청 계측진도의 국내 활용

  • Published : 2010.04.30

Abstract

In general, the seismic intensity deduced from instrumental data has been evaluated from the empirical relation between the intensity and the PGA. From the point of view that the degree of earthquake damage is more closely associated with the seismic intensity than with the observed PGA, JMA developed the instrumental seismic intensity (JMA instrumental intensity) meter that estimate the real-time seismic intensity from the observed strong motion data to obtain a more correct estimate of earthquake damage. The purpose of the present study is to propose a practical application of the JMA instrumental intensity in Korea. Since the occurrence of strong earthquakes is scarce in the Korean Peninsula, there is an insufficiency of strong motion data. As a result, strong motion data were synthesized by a stochastic procedure to satisfy the characteristics of a seismic source and crustal attenuation of the Peninsula. Six engineering ground motion parameters, including the JMA instrumental intensity, were determined from the synthesized strong motion data. The empirical relations between the ground motion parameters were then analyzed. Cluster analysis to classify the parameters into groups was also performed. The result showed that the JMA acceleration ($a_0$) could be classified into similar group with the spectrum intensity and the relatively distant group with the CAV (Cumulative Absolute Velocity). It is thought that the $a_0$ or JMA intensity can be used as an alternative criterion in the evaluation of seismic damage. On the other hand, attenuation relation equations for PGA and $a_0$ to be used in the prediction of seismic hazard were derived as functions of the moment magnitude and hypocentral distance.

계기에 의한 진도산정은 보통 PGA와 진도와의 경험적인 관계식으로부터 계산되어 왔다. 그러나 일본 기상청은 지진에 의한 피해의 정도는 관측된 PGA보다는 진도와 상관이 더 크다는 점에 착안하여, 지진 계측기에 의해 실시간으로 진도를 산정(JMA 계측 진도)함으로서 지진재해를 좀 더 정확히 평가하는 방안을 채택하고 있다. 이 연구의 목적은 국내에서의 JMA 계측진도의 실제적인 활용방안을 제시하는 것이다. 한반도는 강진의 발생빈도가 낮기 때문에 사용할 수 있는 강진자료가 충분치 않다. 따라서 한반도의 지진원 특성과 감쇠특성에 맞는 강진동을 추계학적인 방법으로 합성하였다. 이러한 방법으로 합성된 강진자료에 대하여 JMA 계측진도를 포함한 6개의 공학적 지진동 상수들을 계산하였다. 다음으로 계산된 상수들 사이의 경험적인 관계식을 결정하였으며, 이 상수들을 몇 개의 그룹으로 분류하기 위한 군집분석을 수행하여 지진동 상수들을 분류하였다. 그 결과, JMA 가속도 ($a_0$)는 스펙트럼 진도와 유사한 그룹으로 분류되었으며, CAV(Cumulative Absolute Velocity)와는 비교적 관계가 먼 그룹으로 나타났다. JMA 계측진도는 지진재해 평가에 있어서 다른 하나의 평가척도로서 사용이 기능할 것으로 생각된다. 한편 지진재해의 예측에 활용이 가능한 PGA와 $a_0$에 대한 감쇠식이 모멘트 규모와 진원거리의 함수로 유도되었다.

Keywords

References

  1. Japan Meteorological Agency, “http://www.jma.go.jp/jma/indexe.html”.
  2. Kashima, T., “http://iisee.kenken.go.jp/staff/kashima/soa2000/soa.htm”.
  3. Karim, K.R., and Yamazaki, F., “Corelation of JMA instrumental seismic intensity with strong motion parameters,” Earthquake Engineering and Structural Dynamics, Vol. 31, 1191-1212, 2002. https://doi.org/10.1002/eqe.158
  4. Danciu, L., and Tselentis, G.-A., “Engineering ground motion parameters attenuation relationships for Greece,” Bulletin of Seismological Society of America, Vol. 97, 162-183, 2007. https://doi.org/10.1785/0120050087
  5. Arias, A., “A measure of earthquake intensity, in Seismic Design of Nuclear Power Plants,” Edited by Hansen, R., MIT Press, Cambridge, Massachusettes, 438-483, 1970.
  6. Housner, G.W., “Spectrum intensities of strong motion earthquakes,” in Proceedings of Symposium on Earthquake and Blast Effects Structures, C.M. Feigen(Editors), Los Angeles, 21-36, 1952.
  7. EPRI(Electric Power Research Institute), “Standardization of the cumulative absolute velocity,” EPRI TR-100082s, 1991.
  8. Boore, D.M., “SMSIM - Fortran programs for simulating ground motions from earthquakes: Version 2.3 - A Revision of OFR 96-80-A,” U.S. Geological Survey, 55, 2005.
  9. 김성균, 김병철, “한반도 지진의 지진원 상수,” 한국지구과학회지, 제29권, 2호, 117-127, 2008. https://doi.org/10.5467/JKESS.2008.29.2.117
  10. 조남대, 박창업, “한반도 남동부에서 부지효과를 고려한 스펙트럼 감쇠상수 추정 및 강지진동의 추계학적 모사,” 한국지진공학회논문집, 제7권, 6호, 59-70, 2003. https://doi.org/10.5000/EESK.2003.7.6.059
  11. 김서영, 김성균, “국내 광대역 지진관측소의 부지증폭 특성,” 한국지구과학회지, 제30권, 7호, 610-623, 2009. https://doi.org/10.5467/JKESS.2009.30.7.810
  12. Shabestari, K.T., and Yamazaki, F., “A proposal of instrumental seismic intensity scale compatible with MMI evaluated from three-component acceleration records,” Earthquake Spectra, Vol. 17, 711-723, 2001. https://doi.org/10.1193/1.1425814
  13. Davis, J.C., Statistics and data analysis in geology, John Wiley & Sons Inc., New York, U.S.A., 550, 1973.
  14. Reghunath, R., Murthy, T.R.S., and Raghavan, B.R., “The utility of multivariate statistical techniques in hydrogeochemical studies: an example from Karnatake, India,” Water Research, Vol. 36, 2437-2442, 2002. https://doi.org/10.1016/S0043-1354(01)00490-0
  15. Atkinson, G.M. and Silva, W., “Stochastic Modeling of California Ground Motions,” Bulletin of the Seismological Society of America, Vol. 90, 255-274, 2000. https://doi.org/10.1785/0119990064
  16. U.S. NRC, “Regulatory guide 1.166 Pre-earthquake planning and immediate nuclear power plant operator post-earthquake actions,” U.S. Nuclear Regulatory Commission, 1997.
  17. McCann, M.W., “Development of U.S. NRC OBE exceedance criteria for NPPs,” International Workshop on Technical issues of Post-earthqwuake Procedure for NPPs organized by KEPRI, NETEC, KHNP, and KOPEC, 2009.