DOI QR코드

DOI QR Code

탄소나노튜브가 분산된 비스무스 텔루라이드 기지 복합재료의 제조 및 열전특성

Fabrication and Thermoelectric Properties of Carbon Nanotube/Bi2Te3 Composites

  • 김경태 (한국기계연구원 부설 재료연구소) ;
  • 장경미 (한국기계연구원 부설 재료연구소) ;
  • 김경주 (한국기계연구원 부설 재료연구소) ;
  • 하국현 (한국기계연구원 부설 재료연구소)
  • Kim, Kyung-Tae (Powder Technology Research Group, Korea Institute of Materials Science) ;
  • Jang, Kyeong-Mi (Powder Technology Research Group, Korea Institute of Materials Science) ;
  • Kim, Kyong-Ju (Powder Technology Research Group, Korea Institute of Materials Science) ;
  • Ha, Gook-Hyun (Powder Technology Research Group, Korea Institute of Materials Science)
  • 발행 : 2010.04.28

초록

Carbon-nanotube-embedded bismuth telluride (CNT/$Bi_2Te_3$) matrix composites were fabricated by a powder metallurgy process. Composite powders, whereby 5 vol.% of functionalized CNTs were homogeneously mixed with $Bi_2Te_3$ alloying powders, were successfully synthesized by using high-energy ball milling process. The powders were consolidated into bulk CNT/$Bi_2Te_3$ composites by spark plasma sintering process at $350^{\circ}C$ for 10 min. The fabricated composites showed the uniform mixing and homogeneous dispersion of CNTs in the $Bi_2Te_3$ matrix. Seebeck coefficient of CNT/$Bi_2Te_3$ composites reveals that the composite has n-type semiconducting characteristics with values ranging $-55\;{\mu}V/K$ to $-95\;{\mu}V/K$ with increasing temperature. Furthermore, the significant reduction in thermal conductivity has been clearly observed in the composites. The results showed that CNT addition to thermoelectric materials could be useful method to obtain high thermoelectric performance.

키워드

참고문헌

  1. R. Venkatasubramanian, E. Silvola, T. Colpitts and B. O’Quinn: Science, 413 (2001) 297.
  2. M. Toprak, Y. Zhang and M. Muhammed: Mat. Lett., 57 (2003) 3976. https://doi.org/10.1016/S0167-577X(03)00250-7
  3. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vahaee, Z. Chen, J. Liu, M. S. Dresselhaus, G. Chen and Z. Ren: Science, 320 (2008) 634. https://doi.org/10.1126/science.1156446
  4. L. D. Zhao, B. Zhang, J. Li, M. Zhou, W. Liu and J. Liu: Journal of Alloys and Compounds, 455 (2008) 259. https://doi.org/10.1016/j.jallcom.2007.01.015
  5. G. Zhan, J. D. Kuntz, A. K. Mukherjee, P. Zhu and K. Koumoto: Scripta Mater., 54 (2006) 77. https://doi.org/10.1016/j.scriptamat.2005.09.003
  6. K. T. Kim, S. I. Cha, S. H. Hong, S. H. Hong: Materials Science and Engineering, A430 (2006) 27.
  7. E. A. Skrabek: Proc. 9th Inter. Soc. Energy Conv. Eng. Conf. (IECEC), (1974) 160.
  8. X. A. Fan, J. Y. Yang, R. G. Chen, W. Zhu and S. Q.: Bao, Mat. Sci. Eng. A, 438-440 (2006) 190.
  9. Y. Deng, C. Cui, N. Zhang, T. Ji, Q. Yang and L. Guo: J. Solid State Chem., 179 (2006) 1575. https://doi.org/10.1016/j.jssc.2006.02.014
  10. Y. Q. Cao, X. B. Zhao, T. J. Zhu, X. B. Zhang and J. P. Tu, Appl. Phys. Lett., 92 (2008) 143106. https://doi.org/10.1063/1.2900960