DOI QR코드

DOI QR Code

Structural Studies of the Self-Assemblies Created with Dipyrrins

  • Shin, Ji-Young (Department of Chemistry, University of British Columbia) ;
  • Patrick, Brian O. (Department of Chemistry, University of British Columbia) ;
  • Son, Seung-Bae (Department of Chemistry, Chonbuk National University and Research Institute of Physics and Chemistry) ;
  • Hahn, Jae-Ryang (Department of Chemistry, Chonbuk National University and Research Institute of Physics and Chemistry) ;
  • Dolphin, David (Department of Chemistry, University of British Columbia)
  • 발행 : 2010.04.20

초록

Three-dimensional superstructures of unique self-assemblies generated by exploring the conformational flexibility of various dipyrromethenes through creation of hydrogen-bonds with metal-halide anions are reported and the conformational diversity is thoroughly described in the solid and solution states by X-ray diffraction analysis and variable temperature NMR spectroscopy. The tetrahedral or octahedral structures of their precursors, various metal-dipyrromethene complexes, are also reported, based on the crystallographic data. STM images of the self-assemblies observed on graphite surfaces present interesting arrangements and appear as tubular bunches.

키워드

참고문헌

  1. Desiragu, G. R. Crystal Engineering: The Design of Organic Solids; Elsevier: Amsterdam, 1989.
  2. Lehn, J. M. Supramolecular Chemistry: Concepts and Perspectives; VCH: Weinheim, 1995.
  3. Comprehensive Supramolecular Chemistry; Atwood, J. L., Davies,J. E. D., MacNicol, D. D., Vogtle, F., Eds.; Pergamon: Oxford,1996.
  4. Desiraju, G. R. Nature 2001, 412, 397. https://doi.org/10.1038/35086640
  5. Hollingsworth, M. D. Science 2002, 295, 2410.
  6. MacDonald, J. C.; Dorrestein, P. C.; Pilley, M. M.; Foote, M. M.;Lundburg, J. L.; Denning, R. W.; Schultz, A. J.; Manson, J. L. J. Am. Chem. Soc. 2000, 122, 11692. https://doi.org/10.1021/ja002102v
  7. Moulton, B.; Zaworotko, M. J. Chem. Rev. 2001, 101, 1629. https://doi.org/10.1021/cr9900432
  8. Sommerdijk, N. A. J. M. Angew. Chem. Int. Ed. 2003, 42, 3572. https://doi.org/10.1002/anie.200390544
  9. Daisuke, U.; Yusuke, U.; Takashi, O. Science 2009, 326, 120-123. https://doi.org/10.1126/science.1176758
  10. Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaudi,M.; Kim, J. Nature 2003, 423, 705-714. https://doi.org/10.1038/nature01650
  11. Ko, Y. H.; Kim, E.; Hwang, I.; Kim, K. Chem. Commun. 2007,1305-1315.
  12. Sharma, C. V. K.; Broker, G. A.; Huddleston, J. G.; Baldwin, J. W.;Metzger, R. M.; Rogers, R. D. J. Am. Chem. Soc. 1999, 121, 1137. https://doi.org/10.1021/ja983983x
  13. Yanagi, H.; Mukai, H.; Ikuta, K.; Shibutani, T.; Kamikado, T.; Yokoyama, S.; Mashiko, S. Nano Lett. 2002, 2, 601. https://doi.org/10.1021/nl0255597
  14. Chen, Q.; Dolphin, D. Can. J. Chem. 2002, 80, 1668. https://doi.org/10.1139/v02-179
  15. Thompson, A.; Rettig, S. J.; Dolphin, D. Chem. Commun. 1999,631.
  16. Zhang, Y.; Thompson, A.; Rettig, S. J.; Dolphin, D. J. Am. Chem. Soc. 1998, 120, 13537. https://doi.org/10.1021/ja9834982
  17. Maeda, H.; Mihashi, Y.; Haketa, Y. Org. Lett. 2008, 10, 3179. https://doi.org/10.1021/ol801014z
  18. Maeda, H. Eur. J. Org. Chem. 2007, 5313.
  19. Sessler, J. L.; Berthon-Gelloz, G.; Gale, P. A.; Camiolo, S.; Anslyn,E. V.; Anzenbacher, P., Jr.; Furuta, H.; Kirkovits, G. J.; Lynch, V.M.; Maeda, H.; Morosini, P.; Scherer, M.; Shriver, J.; Zimmerman,R. S. Polyhedron 2003, 22, 2963. https://doi.org/10.1016/S0277-5387(03)00436-4
  20. Sessler, J. L.; Jayawickramarajah, J.; Sherman, C. L.; Brodbelt, J.S. J. Am. Chem. Soc. 2004, 126, 11460. https://doi.org/10.1021/ja046773v
  21. Katayev, E. A.; Boev, N. V.; Khrustalev, V. N.; Ustynyuk, Y. A.;Tananaev, I. G.; Sessler, J. L. J. Org. Chem. 2007, 72, 2886. https://doi.org/10.1021/jo0624849
  22. Desiraju, G. R. Angew. Chem. Int. Ed. Engl. 1995, 34, 2311. https://doi.org/10.1002/anie.199523111
  23. Desiraju, G. R. Chem. Commun. 1997, 1475.
  24. Bond, A. D. CrystEngComm. 2007, 9, 833. https://doi.org/10.1039/b708112j
  25. Simard, M.; Su, D.; Wuest, J. D. J. Am. Chem. Soc. 1991, 113,4696. https://doi.org/10.1021/ja00012a057
  26. Fournier, J. H.; Maris, T.; Wuest, J. D.; Guo, W. Z.; Galoppini, E.J. Am. Chem. Soc. 2003, 125, 1002. https://doi.org/10.1021/ja0276772
  27. Falk, H. In The Chemistry of Linear Oligopyrroles and Bile Pigments; Springer-Verlag Wien: New York, 1989; pp 108.
  28. Shin, J. Y.; Dolphin, D.; Patrick, B. O. Cryst. Growth Des. 2004, 4,659. https://doi.org/10.1021/cg049979g
  29. Shin, J. Y.; Patrick, B. O.; Dolphin, D. CrystEngComm. 2008, 10,960. https://doi.org/10.1039/b800367j
  30. Shin, J. Y.; Patrick, B. O.; Dolphin, D. Org. Biomol. Chem. 2009,7, 2032. https://doi.org/10.1039/b904446a
  31. Brückner, C.; Karunaratne, V.; Rettig, S.; Dolphin, D. Can. J. Chem. 1996, 74, 2182. https://doi.org/10.1139/v96-245
  32. Miao, Q.; Shin, J. Y.; Patrick, B. O.; Dolphin, D. Chem. Commun.2009, 2541-2543.
  33. Bruckner, C.; Zhang, Y.; Rettig, S. J.; Dolphin, D. Inorg. Chim. Acta. 1997, 263, 279-286. https://doi.org/10.1016/S0020-1693(97)05700-9

피인용 문헌

  1. A free-base dipyrrin capable of forming extended architectures comparable to those of its metal(ii) complex counterparts vol.13, pp.23, 2011, https://doi.org/10.1039/c1ce05913k
  2. From Sequential to One-Pot Synthesis of Dipyrrin Based Grid-Type Mixed Metal–Organic Frameworks vol.52, pp.24, 2013, https://doi.org/10.1021/ic402892f
  3. Pre-/post-functionalization in dipyrrin metal complexes – antitumor and antibacterial activity of their glycosylated derivatives vol.47, pp.35, 2018, https://doi.org/10.1039/C8DT03059F
  4. Functional Supramolecular Architectures of Dipyrrin Complexes vol.6, pp.2296-2646, 2018, https://doi.org/10.3389/fchem.2018.00349
  5. A Silver Bite: Crystalline Heterometallic Architectures Based on Ag–π Interactions with a Bis‐Dipyrrin Zinc Helicate vol.20, pp.9, 2010, https://doi.org/10.1002/chem.201304319
  6. Exquisite chemistries of meso -pentafluorophenyl and meso -(2,6-dichlorophenyl) dipyrromethanes vol.25, pp.10, 2021, https://doi.org/10.1142/s1088424621300019
  7. Supramolecular Perspective of Coordination Effects on Fluorine Interactions vol.21, pp.11, 2021, https://doi.org/10.1021/acs.cgd.1c00584