DOI QR코드

DOI QR Code

γ-ray Radiation Induced Synthesis and Characterization of α-Cobalt Hydroxide Nanoparticles

  • Kim, Sang-Wook (Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute (KAERI)) ;
  • Kwon, Bob-Jin (Advanced Functional Nanohybrid Material Laboratory, Department of Chemistry, Dongguk University-Seoul Campus) ;
  • Park, Jeong-Hoon (Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute (KAERI)) ;
  • Hur, Min-Goo (Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute (KAERI)) ;
  • Yang, Seung-Dae (Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute (KAERI)) ;
  • Jung, Hyun (Advanced Functional Nanohybrid Material Laboratory, Department of Chemistry, Dongguk University-Seoul Campus)
  • Published : 2010.04.20

Abstract

A novel synthetic route has been developed to prepare $\alpha$-cobalt hydroxide with intercalated nitrate anions. It was successfully synthesized by $\gamma$-ray irradiation under simple conditions, i.e., air atmosphere, without base. Under $\gamma$-ray irradiation, it leads to the formation of layered cobalt hydroxynitrate compounds which have small crystalline size and have the role of a generator of hydroxyl anion. Structural and morphological characterizations were performed by using power X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and high resolution transmission electron microscopy (HR-TEM). The component and thermal stability of the sample were respectively measured by Fourier transform infrared (FT-IR) spectroscopy, elemental analysis, and thermal analyses, including thermogravimetry (TG) and differential thermal analysis (DTA).

Keywords

References

  1. He, T.; Chen, D. R.; Jiao, X. L.; Wang, Y. L.; Duan, Y. Z. Chem. Mater. 2005, 17, 4023. https://doi.org/10.1021/cm050727s
  2. Quan, M.; Zeng, H. C. J. Mater. Chem. 1997, 7, 493. https://doi.org/10.1039/a607627k
  3. Liu, Z. P.; Ma, R. Z.; Osada, M.; Ebina, Y.; Iyi, N.; Sasaki, T. J. Am. Chem. Soc. 2006, 128, 4872. https://doi.org/10.1021/ja0584471
  4. Rabu, P.; Angelov, S.; Legoll, P. J.; Belaiche, M.; Drillon, M.Inorg. Chem. 1993, 32, 2463. https://doi.org/10.1021/ic00063a043
  5. Reiche, W. T. Solid State Ionics 1986, 22, 133.
  6. Cai, F. S.; Zhang, G. Y.; Chen, J.; Gou, X. L.; Liu, H. K.; Dou, S. X.Angew. Chem. Int. Ed. 2004, 43, 4212. https://doi.org/10.1002/anie.200460053
  7. Cao, L.; Kong, L. B.; Liang, Y. Y.; Li, H. L. Chem. Commun. 2004,14, 1646.
  8. Kamath, P. V.; Annal Therese, G. H.; Gopalakrishnan, J. J. Solid State Chem. 1997, 128, 38. https://doi.org/10.1006/jssc.1996.7144
  9. Xu, R.; Zeng, H. C. Chem. Mater. 2003, 15, 2040. https://doi.org/10.1021/cm021732o
  10. Rabu, P.; Anlelov, S.; Legoll, P.; Belaiche, M.; Drillon, M. Inorg. Chem. 1993, 32, 2463. https://doi.org/10.1021/ic00063a043
  11. Xu, Z.; Zeng, H. Chem. Mater. 1999, 11, 67. https://doi.org/10.1021/cm980420b
  12. Jayashree, R. S.; Vishnu Kamath, P. V. J. Mater. Chem. 1999, 9,961. https://doi.org/10.1039/a807000h
  13. Rajamathi, M.; Kamath, P. V. Int. J. Inorg. Mater. 2001, 3, 901. https://doi.org/10.1016/S1466-6049(01)00090-3
  14. Rajamathi, M.; Kamath, P. V.; Seshadri, R. Mater. Res. Bull. 2000,35, 271. https://doi.org/10.1016/S0025-5408(00)00199-9
  15. Keghouche, N.; Chettibi, S.; Latrèche.; Bettahar, M. M. Radiat. Phys. Chem. 2005, 74, 185. https://doi.org/10.1016/j.radphyschem.2005.04.021
  16. Ramesh, T. N.; Rajamathi, M.; Kamath, V. J. Solid State Chem.2006, 179, 2386. https://doi.org/10.1016/j.jssc.2006.04.034
  17. Belloni, J. Catalysis Today 2006, 113, 141. https://doi.org/10.1016/j.cattod.2005.11.082
  18. Dey, G. R. Radiat. Phys. Chem. 2005, 74, 172. https://doi.org/10.1016/j.radphyschem.2005.04.012
  19. Jeevannandam, P.; Koltypin, Y.; Gedanken, A.; Mastai, Y. J. Mater. Chem. 2000, 10, 511. https://doi.org/10.1039/a908065a
  20. Hu, Z.; Xie, Y.; Wang, Y.; Xie, L.; Fu, G. J. Phys. Chem. B 2009,113, 12502.
  21. Klug, H. P.; Alxander, L. E. X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials; John Wiley & Sons: New York, 1962.
  22. Chen, W.; Yang, Y.; Shao, H.; Fan, J. J. Phys. Chem. B 2008, 112,17471.
  23. Liu, Z. P.; Ma, R. Z.; Osada, M.; Takada, K.; Sasaki, T. J. Am. Chem. Soc. 2005, 127, 13869. https://doi.org/10.1021/ja0523338
  24. Zhu,Y. C.; Li, H. L.; Koltypin, Y.; Gedanken, A. J. Mater. Chem.2002, 12, 729. https://doi.org/10.1039/b107750c
  25. Xu, L.; Ding, Y. S.; Chen, C. H.; Zhao, L.; Rimkus, C.; Joesten, R.;Suib, S. L. J. Mater. Chem. 2008, 20, 308. https://doi.org/10.1021/cm702207w

Cited by

  1. Radiolytic Formation of Fe3O4 Nanoparticles: Influence of Radiation Dose on Structure and Magnetic Properties vol.9, pp.3, 2014, https://doi.org/10.1371/journal.pone.0090055
  2. capture from high-humidity flue gas vol.8, pp.3, 2015, https://doi.org/10.1039/C4EE02717E
  3. Encapsulating surface-clean metal nanoparticles inside metal–organic frameworks for enhanced catalysis using a novel γ-ray radiation approach pp.2052-1553, 2017, https://doi.org/10.1039/C7QI00577F
  4. Electron Beam Mediated Simple Synthetic Route to Preparing Layered Zinc Hydroxide vol.33, pp.6, 2010, https://doi.org/10.5012/bkcs.2012.33.6.1949
  5. γ-Ray irradiation synthesis and characterization of nickel hydroxide nanoparticles vol.73, pp.12, 2010, https://doi.org/10.1016/j.jpcs.2011.12.020
  6. An Alkaline-Stable, Metal Hydroxide Mimicking Metal–Organic Framework for Efficient Electrocatalytic Oxygen Evolution vol.138, pp.27, 2016, https://doi.org/10.1021/jacs.6b03125
  7. Synthesis and characterization of magnetite (Fe3O4) via radiolytic reduction method vol.1436, pp.None, 2010, https://doi.org/10.1088/1742-6596/1436/1/012067
  8. Enhanced CO2 capture from methane-stream using MII -Al LDH prepared by microwave-assisted urea hydrolysis vol.32, pp.11, 2021, https://doi.org/10.1016/j.apt.2021.09.016