DOI QR코드

DOI QR Code

Experimental and Theoretical Investigations of Spectral, Tautomerism and Acid-Base Properties of Schiff Bases Derived from Some Amino Acids

  • Ebead, Y.H. (South Valley University, Faculty of Science, Chemistry Department) ;
  • Salman, H.M.A. (South Valley University, Faculty of Science, Chemistry Department) ;
  • Abdellah, M.A. (South Valley University, Faculty of Science, Chemistry Department)
  • Published : 2010.04.20

Abstract

The electronic absorption spectra of five Schiff bases derived from 2-hydroxy-1-naphthaldehyde with glycine, alanine, leucine, valine and phenylalanine have been measured in various solvents. The observed bands were assigned to the proper electronic transitions and compared with the predicted transitions at the semiempirical level of theory. The calculated equilibrium constants are in agreement with the experimental results, predicting the existence of all studied compounds predominantly or completely in keto-imine tautomerism. On the other hand, a correlation between $\nu\;(cm^{-1})$ (main frequency of each compound) and the well known solvent parameters $E_T$ (30), $\varepsilon_T$, $\pi^*$ been made. Furthermore, the acid dissociation constants, $pK_a$, were determined by using three different spectrophotometric methods.

Keywords

References

  1. Fedorov, B. S.; Volyanskii, Y. L.; Shevehuk, M. I. Khim.-Farm Zh. 1978, 12, 77.
  2. Bolotin, B. M.; Etingen, N. B.; Lastovskii, R. P.; Zeryukina, L. S.;Safina, R. U. Zh. Org. Khim. 1977, 13, 375.
  3. Dikusar, E. A.; Kozlov, N. G. Russ. J. Org. Chem. 2006, 42, 369. https://doi.org/10.1134/S1070428006030055
  4. Mishra, V.; Pandeya, S. N.; Anathan, S. Acta Pharm. Turc. 2000,42, 139.
  5. Tian, Y. P.; Duan, C. Y.; Zhao, C. Y.; You, X. Z.; Mak, T. C. W.;Zhang, Z. Inorg. Chem. 1997, 36, 1247. https://doi.org/10.1021/ic9603870
  6. Shetye, S. S.; Mayadeo, M. S.; Hexameshwar, N. B. Asian J. Chem. 1999, 11, 1379.
  7. Miao, R.; Shuoling, L.; Rudong, Y.; Lau, Y.; Wenbing, Y. Indian J. Chem. Sec. A 2003, 42, 318.
  8. Sakiyan, İ.; Yilmaz, H. Synth. React. Inorg. Met.-org. Chem. 2003,33, 971 https://doi.org/10.1081/SIM-120021931
  9. Sakiyan, I. Trans. Met. Chem. 2007, 32, 131. https://doi.org/10.1007/s11243-006-0139-5
  10. Shebl, M. Spectrochim. Acta A 2009, 73, 313. https://doi.org/10.1016/j.saa.2009.02.030
  11. Montazerozohori, M.; Joohari, S.; Musavi, A. S. Spectrochim. Acta A 2009, 73, 231. https://doi.org/10.1016/j.saa.2009.02.023
  12. Omar, M. M.; Mohamed, G. G.; Ibrahim, A. A. Spectrochim. Acta A 2009, 73, 358. https://doi.org/10.1016/j.saa.2009.02.043
  13. Wang, M.; Wang, L. F.; Li, Y. Z.; Li, Q. X.; Xu, Z. D.; Qu, D. Q.Trans. Met. Chem. 2001, 26, 307. https://doi.org/10.1023/A:1007159301849
  14. Chatterjee, D.; Mitra, A.; Roy, B. C. J. Mol. Cat. 2000, 161, 17. https://doi.org/10.1016/S1381-1169(00)00269-7
  15. Tarasconi, P.; Capacchi, S.; Pelosi, G.; Corina, M.; Albertini, R.;Bonati, A.; Dall’Aglio, P. P.; Lunghi, P.; Pinelli, S. Bioorg. Med. Chem. 2000, 8, 154.
  16. Mahmoud, M. R.; El-Gyar, S. A.; Moustafa, A. A.; Shaker, A.Polyhedron 1987, 6(5), 1017. https://doi.org/10.1016/S0277-5387(00)80947-X
  17. Palys, B. J.; Bukowska, J.; Jackowska, K. J. Electroanal. Chem.1997, 428, 19. https://doi.org/10.1016/S0022-0728(97)00029-6
  18. Aly, A. A.; El-Shaieb, K. M. Tetrahedron 2004, 60, 3797. https://doi.org/10.1016/j.tet.2004.03.017
  19. Hadjoudis, E. In Photochromism: Molecules and Systems; Durr,H., Laurent, H. B., Eds., Elsevier: Amsterdam, 1990; pp 685.
  20. Leuchtenberger, W.; Huthmacher, K.; Drauz, K. Appl. Microbiol. & Biotechnol. 2005, 69(1), 1. https://doi.org/10.1007/s00253-005-0155-y
  21. Sakiyan, I.; Gunduz, N.; Gündüz, T. Synth. React. Inorg. Met.-Org. Chem. 2001, 31(7), 1175. https://doi.org/10.1081/SIM-100106856
  22. Heinert, D.; Martell, A. E. J. Am. Chem. Soc. 1963, 85, 183. https://doi.org/10.1021/ja00885a017
  23. Heinert, D.; Martell, A. E. J. Am. Chem. Soc. 1963, 85, 188. https://doi.org/10.1021/ja00885a018
  24. Twine, S. M.; Murphy, L.; Phillips, R. S.; Callis, P.; Cash, M. T.;Szabo, A. G. J. Phys. Chem. B 2003, 107, 637. https://doi.org/10.1021/jp027102r
  25. Ebead, Y. H.; Roshal, A. D.; Wróblewska, A.; Doroshenko, A.O.; Blazejowski J. Spectrochim. Acta A 2007, 66, 1016. https://doi.org/10.1016/j.saa.2006.05.014
  26. Ebead, Y. H.; Fandy, R. F.; Zayed, S. E.; Abd-Elshafi, E.; Ibrahim,S. A. Can. J. Anal. Sci. Spectrosc. 2009, 53(6), 274.
  27. Salman, H. M. A. Can. J. Anal. Sci. Spectrosc. 2000, 45(5&6),117.
  28. Dal, H.; Suzen, Y.; Sahin, E. Spectrochim. Acta A 2007, 67, 808. https://doi.org/10.1016/j.saa.2006.08.037
  29. Britton, H. T. S. Hydrogen ions; Chapman Hall: London, 1952;pp 364.
  30. Douheret, G. Bull. Soc. Chem. Fr. 1967, 4, 1412.
  31. Douheret, G. Bull. Soc. Chem. Fr. 1968, 8, 3122.
  32. Stewart, J. J. P. J. Mol. Model. 2007, 13, 1173. https://doi.org/10.1007/s00894-007-0233-4
  33. Labanowski, J. K., Andzelm, J. W., Eds.; Density Functional Methods in Chemistry; Springer Verlag: New York, 1991.
  34. Baker, J. J. Comput. Chem. 1986, 7, 385. https://doi.org/10.1002/jcc.540070402
  35. Schlegel, H. B., Ed.; Modern Electronic Structure Theory: Geometry Optimization on Potential Energy Surfaces; World Scientific: Singapore, 1994.
  36. Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkle, J. S.; Gordon, M.S.; Defrees, D. J.; Pople, J. A. J. Chem. Phys. 1972, 77, 3645.
  37. Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213. https://doi.org/10.1007/BF00533485
  38. Becke, A. D. Phys. Rev. A 1988, 38, 3098. https://doi.org/10.1103/PhysRevA.38.3098
  39. Becke, A. D. J. Chem. Phys. 1993, 98, 1372. https://doi.org/10.1063/1.464304
  40. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  41. Handy, N. C.; Tozer, D. J.; Laming, G. J.; Murray, C. W.; Amos,R. D. Isr. J. Chem. 1993, 33, 331. https://doi.org/10.1002/ijch.199300040
  42. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T. Jr.; Kudin,K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone,V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson,G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda,R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.;Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann,R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski,J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg,J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.;Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari,K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.;Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.;Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.;Pople, J. A. Gaussian 03, Revision D.01: Gaussian, Inc.: Wallingford CT, 2004.
  43. MOPAC2009, Stewart, J. J. P. Stewart Computational Chemistry, Version 9.025W web: http://OpenMOPAC.net.
  44. Dewar, M. J. S.; Zoebisch, E. G.; Healey, F. F.; Stewart, J. J. P. J. Am. Chem. Soc. 1985, 107, 3902. https://doi.org/10.1021/ja00299a024
  45. Nakamoto, K. Application in Coordination Chemistry. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th ed.; John Wiley&Sons, Inc.: 1997; New York, p 66.
  46. Ozcan, Y.; İde, S.; Sakıyan, İ.; Logoglu, E. J. Mol. Struct. 2003,658, 207. https://doi.org/10.1016/S0022-2860(03)00455-1
  47. Breneman, C. M.; Wiberg, K. B. J. Comput. Chem. 1990, 11, 361. https://doi.org/10.1002/jcc.540110311
  48. Hgelin, D.; Sixl, H. Chem. Phys. 1983, 77, 391. https://doi.org/10.1016/0301-0104(83)85093-9
  49. Cohen, M. D.; Schmidt, G. M. J.; Flavian, S. J. Chem. Soc. 1964,2041. https://doi.org/10.1039/jr9640002041
  50. Issa, R. M.; Khedr, A. M.; Rizk, H. F. Spectrochim. Acta A 2005,62, 621. https://doi.org/10.1016/j.saa.2005.01.026
  51. Briegleb, G. Electron Donor-Acceptor Complex; Springer Verlag:Berlin, 1961.
  52. Buncel, E.; Rajagopal, S. J. Org.Chem. 1989, 54, 798. https://doi.org/10.1021/jo00265a017
  53. Reichardt, C. Solvents and Solvent Effects in Organic Chemistry, 2nd ed.; VCH: Weinheim, 1990; p 432.
  54. Hutching, M. G. Dyes Pigments 1991, 17, 227. https://doi.org/10.1016/0143-7208(91)80029-9
  55. Liu, Q.; Fang, D.; Zheng, J. Spectrochim. Acta A 2004, 60, 1453. https://doi.org/10.1016/j.saa.2003.08.011
  56. Issa, R. M.; Sadek, H.; Izzat, I. I. Z. Phys.Chem. 1971, 74, 17. https://doi.org/10.1524/zpch.1971.74.1_2.017
  57. Issa, R. M.; Hammam, A. S.; Etaiw, S. H. Z. Phys. Chem. 1972,251, 177.

Cited by

  1. Statistical Study For The prediction of pKa Values of Substituted Benzaldoxime Based on Quantum Chemicals Methods vol.55, pp.5, 2011, https://doi.org/10.5012/jkcs.2011.55.5.733
  2. Synthesis and Characterization of a Novel Series of Amphiphilic Mercapto-1,2,4-Triazole Schiff Base Ligands: Investigation of their Behavior in Hydro-Organic Solutions vol.19, pp.3, 2016, https://doi.org/10.1007/s11743-016-1811-1
  3. Analytical challenges and the development of biomarkers to measure and to monitor the effects of ocean acidification vol.30, pp.8, 2010, https://doi.org/10.1016/j.trac.2011.07.004
  4. Synthesis, Spectroscopic, and Biological Investigations of the Ternary Metal Complexes of Schiff Bases Derived From 2-hydroxy-1-naphthaldehyde and Some Amino Acids vol.46, pp.12, 2010, https://doi.org/10.1080/15533174.2011.617348
  5. Influence sandwich π-π stacking interactions in Benzaldoxime adsorption on the fullerene vol.29, pp.3, 2010, https://doi.org/10.1080/1536383x.2020.1832993