HEFRREHE A <Fusd A 12 8 A3 %
Jjournal of Korea Society of Educational Studies in Mathematics
School Mathermatics Vol.12, No.3, 259-271. Sep 2010

Problem Posing by Mathematically Gifted
Middle School Students: A Case Study?

Paek, Dae Hyun - Yi, jinhee“

This study involves investigating problem posing practices for mathematically gifted
first year middle school students in Korea. The overall purpose of this study is twofold:
to examine the students’ preferences on problem posing resources on the division
algorithm and to analyze the approaches of the students’ posing problems related to
specific solution methods. To this end, the patterns of the problems are classified into 6
types such as ‘routine’ and ‘nonroutine’ problems associated with 3 levels of the original
version of problems. Based on the analysis on the problems, we provide some
implications about the nature of mathematically gifted students’ problem posing practices

in gifted education.

| . Introduction

National Council of Teachers of Mathematics
[NCTM] (1980) acknowledged that the students most
neglected, in terms of realizing full potential, are the
gifted students of mathematics. It is well recognized
that the selection and construction of worthwhile
mathematical tasks is considered as one of the most
important decisions teachers need to make (NCTM,
1991). The tasks teachers pose in their classrooms
deserve important consideration because they open or
close the students’ opportunity for meaningful
mathematical learning (Crespo, 2003). Thus when
teachers in gifted education are in such a position to
pose worthwhile mathematical problems for their
students, it is essential to pose them so that they would
meet the needs of the mathematically gifted. NCTM

(1989) recommended that students should have some
experience recognizing and formulating their own
problems. Furthermore, NCTM (1991) stated that a
concept of problem posing such as: “students should
be given opportunities to formulate problems from
given situations and create new problems by modifying
the conditions of a given problem.”

Although current interest in mathematical problem
posing can be seen as representing a new facet of
a longstanding interest in mathematical problem solving
(Stanic and Kilpatrick, 1988), less is known about
instructional strategies that can be effectively promote
productive problem posing (Silver and Cai, 1996). A
few researchers have examined the mathematical
problems posed by children (Ellerton, 1986; English,
1998), by middle school or prospective secondary
school teachers (Silver et al., 1996}, by middle school
students (Silver and Cai, 1996), by preservice teachers
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(Crespo, 2003), or by teachers in gifted education (Pack
and Yi, 2009). As a part of these studies on problem
posing, we intend to develop and use specific solution
methods on the division algorithm to e*amine the
tendency of the probletil posing of mathematicaily
gifted first year middle school students.

In this study we consider two basic questions with
respect to the students’ problem posing practices: What
kinds of problem posing resources do they prefer? and
How do they pose problems related to specific solution
methods?

In order to illuminate the tendency of the students’
problem posing processes, it would be appropriate to
investigate the problems based on their problem types.
Hence in the study reported here, we analyze the patierns
of the ‘student-posed problems [problems]’ which are
classified into 6 types such as ‘routine’ and ‘nonroutine’
problems associated with 3 levels of the original version
of problems. Based on the analysis on the problems,
we then provide some implications in the nature of
the students’ problem posing practices in gifted

education.

Il. Background

According to Brown and Walter (1990), problem
posing is deeply embedded in the activity of problem
solving in two very different ways. First, it is impossible
to solve a new problem without first reconstructing
the task by posing new problems in the very process
of solving. Second, it is frequently the case that after
we have supposedly solved a problem, we do not fully
understand the significance of what we have done,
unless we begin to generate and try to analyze a com-

pletely new set of problems. However, while problem

solving is easily identified as an important aspect of
learning mathematics, problem posing has long been
considered a neglected aspect of mathematical inquiry.

Silver (1994) concluded that students’ activities such
as generating their own problems or ‘solving preformu-
lated problems have added benefit of providing insight
into students’ understanding of important mathematical
concepts as well as into the nature of their school
mathematics activities. In addition, he pointed out the
term ‘problem posing’ has been used to refer both
to the generation of new problems and to the re-
formulation of given problems. ‘Problem posing’ re-
ferred in this paper is that involves generating new
problems or reformulating given problems in the sense
of Silver (1994).

When it now comes to the literature on secondary
school students’ posing problems, Ellerton (1986) found
that the more able children of 11 to 13-year-olds made
up problems of greater computational difficulty, with
more complex number systems and with more
operations than their less able peers. In addition, there
was evidence to suggest that the more able students
planned their problems and were able to work out
the answer, while their less able peers had difficulty
with both the planning and the solution of their own
problems. Silver and Cai (1996) studied on the
mathematical problems generated by middle school
students who were given a brief written ‘story-problem’
description and asked to pose questions that could be
answered using the information. The problems were
examined for solvability, linguistic and mathematical
complexity, and relationships within the set of posed
problems. It was found that students were able to
generate a large number of solvable mathematical
problems and that about half the students generated

sets of related problefns. Moreover, they found that

- 260 -



students’ problem solving performance was highly
correlated with their problem posing performance.

The present problem posing practices are part of
such studies. In this study consideration is now given
to mathematically gifted first year middle school
students’ problem posing activity involving the
generation of new problems by adapting or modifying

the structures of the original version of problems.

IIl. Method

1. Subjects

The subjects were 53 mathematical problems posed
by 53 students out of 76 'mathematically gifted first
year middle school students [students]” in ‘A’
metropolitan city in Korea participated in a week-long
intensive learning program at the institute for gifted
education in science in the city in 2009. The institute
has run a week-long intensive learning program for
science and mathematics twice a year. As far as it
concerned about the mathematics program, it aimed
to improve students’ creative problem solving abilities
and self-directed leaming in gifted education. All 53
participants were enrolled either in the institute of gifted
education in science or in regional gifted education
centers in the city. However, little was known to the
authors about the students’ mathematical beliefs,
mathematical competence, mathematical knowledge,
and previous problem posing experiences in gifted

education.

2. Tasks

‘Posing problems related to specific solution

methods on the division algorithm’ was the theme of
the intensive learning program for mathematics given
at the institute in 2009. In the mathematics program
comprising two 1.5 hour classes and one 40 minute
class, learning resources on problem posing related
to specific solution methods on the division algorithm
including 3 levels of the original version of
mathematical problems which illustrate how to generate
such problems were given to the participating students.
The tasks began with a lecture and discussion where
the nature of tasks was explained and the students’
interpretations of the problem posing and understanding
of the solution methods used in the original version
of problems were shared for approximately 45 minutes.
They were also given 45 minute individual work to
pose problems they would most like to generate in
the first phase and 45 minutes to solve their own
generated problems in the second phase. The final phase
consisted of 45 minute small group (4 or 5 students)
discussion and an additional 40 minute whole group
discussion to share ideas.

In addition, the students were expected to generate
problems individually and hence it is of interest to
note that 3 levels of the original version of problems
were carefully selected as both self-directed learning
resources and instructional examples to help the
students to work alone. Based on the original version
of problems, each student was asked to pose a problem
related to specific solution methods using the division

algorithm:

Let o and b be integers with 6>0. Then there
are unique integers ¢ and r such that «=0bg+vr
with 0 <7 <b.

Recall that the students were asked to pose problems

they would most like to generate.
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Needless to say, it is important to pose problems
well, however it is clearly more important for the
students to develop understandings of their solution
methods. That was one reason that the students were
asked to pose problems with their solutions and the
other was that critical oversights in posing problems
are most likely due to either the fact that they are
posed without being solved beforehand or lacks of
understanding of mathematical concepts.

From now on, unless stated otherwise, we assume
that all the numbers in the problems are integers
throughout this study. The following is the list of 3
levels of the original version of problems given to

the  students.

Problem A. Show that every perfect square is of
the form 3n or 3n+1.

Problem B. Show that if &® is divisible by 3,
then so is «.

Problem C. Find all twin primes (p. ¢) such that
pgt4 is prime.

Problems A, B, and C are denoted by [A], [B],
and [C], respectively. Their solution methods using
the division algorithm were also instructed to the
students as follows: For [Al, let «* be a perfect square.
Then, by the division algorithm, « is of the form 3b
or 3b+1 or 3b+2. It follows that «* is of the form
3n or 3n+1. As an immediate consequence of [A),
it is worthwhile to note the fact that 11111111111 is
not a perfect square because it is of the form 3n+2.
It was given to the students as a corollary of [A].

2

For [B], we suppose that «° is divisible by 3 and,
for contradiction, assume that ¢ is not divisible by
3. Then o is of the form 3n+1 or 3n+2. It follows
that ¢ is not divided by 3, a required contradiction.

Meanwhile, [C] is one of the Korean mathematical

olympiad problems in 1987. It can be solved by using
the fact that every prime number greater than 4 is
of the form 6n—1 or 6n+1. We may assume that
g=p+2. ¥ p=6n-+1,then ¢ is not prime; if p=6n—1,
then pg+4 is not prime. Hence p < 4, which implies
that p=3 and q=35.

Note that [A] is regarded as a computational exercise.
For, if the students know how to apply the division
algorithm to their solution methods, then their solutions
involve simple arithmetic computations. As shown
above, [B] can be justified by ‘proof by contradiction,’
however, the students might not get used to that kind
of logical argument. Hence the specific solution method
of [B] requires somewhat deeper understanding of
mathematical reasoning than that of [A]. It is now
evident that the solution method of [C] is much harder
than that of [B]. Note also that since twin primes are
not within the scope of school mathematics curriculum,
it follows that the students might not have substantial
experiences in learning such topics. Therefore, it is
reasonable to rate the difficulty levels of [A], [B],
and [C] as being moderately easy, intermediate, and

challenging, respectively.
3. Problem Selection

We examined all 76 problems and ruled out 23
of them as our research subjects because neither their
solution methods were related propetly to the division
algorithm nor they modified the conditions of the given
problems. As a consequence of our initial problem
selection procedure, we selected 53 problems as our
research subjects. Such 53 problems were first classified
into 3 categories according to their problem statement
contents associated with [A], [B], and [C]. It turned
out that 32, 19, and 2 problems were related to [A],

- 262 -



{B], and [C], respectively. The next step involved
categorizing the problems as ‘routine’ or ‘monroutine’
problems. These features are to be discussed later in
further detail in the next section. Moreover, there were
28, 14, and 1 routine problems; whereas 4, 5, and
1 nonroutine problems associated with [A], [B], and
{C], respectively. Routine and nonroutine problems
associated with [A], [B], and [C] were denoted by
RA, RB, RC, NA, NB, and NC, respectively. Hence
all 53 problems were completely classified into 6 types
so that there were 28, 14, 1, 4, 5, and | problems
of type RA, RB, RC, NA, NB, and NC, respectively.
We then identified problems of the same type with
others according to their problem statement contents
and problem solving strategies related to the division
algorithm so that there were 3, 2, 1, 4, 4, and 1
prototypical problems of type RA, RB, RC, NA, NB,
and NC, respectively. These 15 prototypical problems
were denoted by RAL, RA2, RA3, NA1, NA2, NA3,
NA4, RB1, RB2, NB1, NB2, NB3, NB4, RCl, and
NCI. Here, for example, we meant RAL by the first
problem of type RA and NB2 the second problem
of type NB. Therefore, there really were 15 problems
to consider altogether and they were the main sources

of data for this study.

4. Data Analysis

For the analysis of the patterns of the problems
in this study, the very nature of the 3 original version
of problems [A], [B], and [C] and the initial overview
of the problems were considered before we identified
problem types (routine, nonroutine; single answer,
computational) and problem features (textbook-like,
investigation-like) among several aspects of problem

posing discussed in NCTM (1991), and also the ways

of approaches such as ‘making problems easy to solve,’

‘posing familiar problems,” ‘posing unfamiliar
problems,” and ‘posing problems blindly’ stated in the
study of Crespo (2003). Hence we adapted the aspects
of the problem types and features discussed in NCTM
(1991) and Crespo (2003) so that the patterns of the
problems were classified into 6 problem types described
in Section 3. In addition, ’routine’ and ’nonroutine’

problems were characterized by the following features.

Problems are considered to be ‘routine’ if they modify
the conditions of the given problem to somewhat less
different conditions or can be solved by simple arith-
metic computations.

Problems are considered to be ‘nonroutine’ if they mod-
ify or extend the conditions of the given problem to
different conditions or require somewhat deeper under-
standing of mathematical concepts or reasoning to solve

the problems.

V. Analysis

We recall that 3 levels of the original version of
problems are: [A] Show that every perfect square is
of the form 3n or 3n+1; [B] Show that if ¢ i divisible
by 3, then so is «; {C) Find all twin primes (p. ¢)
such that pg+4 is prime.

The following is the list of 15 prototypical problems
characterized by their problem types. Recall that, unless
stated otherwise, all the numbers in the problems are

assumed to be integers throughout this study.

RA1. Show that every perfect square is of the form
51 or 5n+1 or Sn+4.

RA2. Is 135442 a perfect square?

RA3. Show that every cubic number is of the form
4n or 4n+1 or 4n+3.
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RBI. Show that if ¢ is divisible by 5, then so is
a@.

RB2. Show that if ¢*+b is even, then so is a+D.
RC1. Find all twin primes (p. ¢) such that pg+5 is
prime.

NAI. What is the probability that a perfect square
n is divisible by 3 and 47

NA2. Show that the product of two consecutive odd
integers cannot be a perfect square.

NA3. Find the number of positive integers n < 100
such that 71n*—2 and 7|n®-1.

NA4. Let p= 5 be a prime number. Then show that
P’ is of the form 182+1 or 18n~1.

NBI1. Show that 3 | 4e{4a+1)(5a+1).

NB2. Find all = such that 713" —2,

NB3. Prove that at least one of a—0, ab, and a-+b
is divisible by 3.

NB4. i § | 2* —n, then show that » cannot be a multiple
of 3 which is not a multiple of 8.

NC1. Show that there are no twin primes (p. ¢} such
that {(p—1){g—1) is prime.

All 53 problems are now completely categorized
as 15 prototypical problems with their frequencies as
shown in Table IV-1.

<Table IV-1> Frequency of Problems in Each Type

Type Problem Frequency Percent{%)

RAl 17 32

RA RA2 7 28 13 52
RA3 4 7
RB1 13 24

RB '
RB2 ) 14 5 26

RC RC1 1 1 2 2
NAl 1 2
NA2 1 2

NA
NA3 1 4 2 8
NA4 1 2
NBI1 2 4
NB2 1 2

NB
NB3 1 5 2 10
NB4 1 2

NC NC1 1 1 2 2

As can be seen in Table IV-1, approximately 80%
of the students generated routine problems whereas
about 20% of the students generated nonroutine ones.
As a whole about 60%, 36%, and 4% of the problems
were related to [A), [B], and [C], respectively. Since
[A}, [B], and [C] can be rated as moderately easy,
intermediate, and challenging problems, respectively,
it is reasonable to conclude that almost all students
(about 96%}) prefer to choose less challenging problems
like [A] and [B] rather than [C] for their problem
posing resources. The main reason for only 4% (2
out of 53) of the students’ choosing [C] as their problem
posing resources is most likely due to the fact that
[C] is neither within the scope of school mathematics
curriculum nor easily accessible resource: by the
students. It is of some interest to note that slightly
more than half (about 52%) of the students posed
problems of type RA, whereas about 8% of them posed
problems of type NA. On the other hand, about 26%
of the problems are of type RB and about 10% of
them are of type NB. Thus it would be much harder
for the students to generate nonroutine problems than
routine ones even though they choose the same problem
posing resources.

By comparing the pairs of problem types (RA, NA),
(RB, NB), and (RC, NC), it can be concluded that:
If the original problem gets easier, then it gets easier
10 generate routine problems; Even though the original
problem gets easier, it gets harder to generate nonroutine
problems; If the original problem gets harder, then
it gets harder to generate both routine and nonroutine
problems. Although most of these results are not
surprising when we consider the simple task in this
study, understanding the depth of the relationship
between the difficulty level of the given problems and

generating (non)routine problems should be lent by
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further empirical support.

1. Routine problems

We are now ready to investigate 6 prototypical
routine problems RA1, RA2, RA3, BB1, RB2, and
RCI1. First of all, RA1 is considered as routine because
no actual adaptations are made to [A]. In the problems
obtained in this study, nearly one of every three
problems (about 32%) is similar to RA1. Moreover,
the other 16 problems similar to RA1 have somewhat

less different conditions such as:

Show that every perfect square is of the form 6n
or 6n+1 or 6n+3 or 6n+4.

Show that every perfect square is of the form 7n
or Tn+1 or Tn+2 or Tn+4.

Show that every perfect square is of the form 8n
or 8n+1 or 8n+4.

Show that every perfect square is of the form
1In or 1ln+1 or 1In+3 or 1ln+4.

RA2 is an immediate consequence of [A}. Out of
6 problems similar to RA2, it turns out that 2 problems’
solution methods are using the result of [A] and 4
problems’ solution methods are using the fact that every
perfect square is of the form 4n or 4n+1. RA3 is
considered as routine because no actual adaptations
are made to [A] except the condition of perfect squares.
The other 3 problems analogous to RA3 are related

to either cubic or biquadratic numbers such as:

Every cubic number is of the form 4n or 4n+1 or
4n+3.

Every biquadratic number is of the form 167 or 16n+1.

RBI1 is a routine problem because no substantial

adaptations are made to [B]. Moreover, the other 12

problems similar to RB1 have somewhat less different
conditions on the divisibility of « when «” is divided
by 6, 7, and 17, respectively. RB2 is regarded as routine,
however its statement is slightly different from that
of RBI. In order solve it, one might need to consider
two cases: «a is even and « is odd. Since the solution
of RBI follows directly from that of [B] and the solution
of RB2 involves slightly more arithmetic computations
than that of [B], it can be concluded that RB2 is
somewhat more difficult to be generated than RB1.
This may partly explain the reason that there are 12
problems similar to RB1, but there is none similar
to RB2.

RCI is the only routine problem related to [C].
1t asks to find all twin primes (p. ¢) such that pg+5
is prime. However, there does not exist a pair of twin
primes (p. ¢) satisfying pg+5 is prime. Although the
student’s solution was concluded that there were no
such twin primes, it is appropriate to rewrite RCI
to understand what is to be proven. Or else, it might
be not easy to conclude that such twin primes do not

exist. Hence we may rewrite RC1 as follows:

Show that there are no twin primes (p. ¢) such that

py+5 is prime.

In fact, the result can be easily verified by the

following well-known property of twin primes.

Every twin prime pair except (3, 5) is of the form
(6n—1, 6n+1).

Of course, this particular property is helpful in posing
problems such as RC1. Hence the students’ lack of
mathematical content knowledge on the properties of
twin primes would caused some constraint in their

posing problems on twin primes.
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2. Nonroutine Problems

We are now in position to consider 9 prototypical
nonroutine problems NA1, NA2, NA3, NA4, NBI,
NB2, NB3, NB4, and NC1. Note that except NB1,
all nonroutine problems are unique in the sense of
their modifications and extensions of the given
problems. It is of interest to note that NA1 is the
only problem associated with the concept of probability.
In statistics, a (theoretical) probability is used when
each outcome in a sample space is equally likely to
occur and so the probability for an event is usually
given by ‘number of outcomes in the event divided
by total number of outcomes in sample space.” Hence
it might be rather easier to solve NA1 if the sample
space is stated by adding the specific range for n so
that we have a finite number of outcomes. An interesting
finding shown in the student’s solution of NA1 is that
it is the only problem with wrong answer. The reason
is most likely that the student considered, by mistake,
the particular form of «, but not «* when « is divided
by 3 or 4. NA2 is written as negative statements and
its condition ‘the product of two consecutive odd
integers’ is somewhat different from that of [B].
Moreover, its solution processes are related to the

following properties:

The product of two consecutive odd integers is of the
form 4n+3.
Every perfect square is of the form 4n or 4n+1.

The statement of NA3 is rather complicated because
it involves two conditions 7 | n*—2 and 7% —1. It
turns out that such n should be of the form 7k+4.
It then remains to count the number of positive integers
of the form 7k-+4 up to 100. Thus it is reasonable

to regard NA3 as nonroutine because of such two

conditions, even though they involve simple arithmetic
computations, NA4 involves a prime number p>5
such that p* is of the form 18n+1 or 18:—1. It is
of interest to note that the solution requires multiple
steps to be taken. First step is to show that p’ is of
the form 4e¢—1 or 4a+1 or 90—1 or 95+1. Second
step is to lead the fact that p* is of the form 36c—1
or 36c+1 or 36c+17 or 36¢c+19 by arithmetic
computations. Last step is to verify that p* has the
required form. Hence, in some sense, the process of
solving NA4 demonstrates the student’s problem posing
ability to extend the problem structures and solution
methods of the given problems.

NBI is to show that 3 |4a{da+1)(5¢+1). Since
3 and 4 are relatively prime, it is equivalent to show
that 3 | «(4e+1)(5a+1). The key factor to solve this
is to substitute a for 3k—1 or 3k or 3k+1. Although
its solution method needs less logical reasoning than
that of [B], it is appropriate to regard it as nonroutine
because of its somewhat different structure of the
dividend. Another problem similar to NBI is to show
that 6 | n(n+1)(2n+1) for every positive integer n.
NB2 involves the divisibility of 3 —~2 by 7 and the
structure of the dividend is rather different from that
of NBI. Even though ‘congruences’ are not within
the scope of school mathematics curriculum, the student
used congruences in the solution such as 3° =2 (mod
7) and 3° =1 (mod 7). Meanwhile, NB3 is to show
that at least one of a—b, ub, and a+1b is divisible
by 3. The student’s solution is supported by logical
arguments by considering two cases, depending on
whether or not at least one of « and b is divisible
by 3. Note also that, in the solution of NB3, the student
used the relation whether or not ¢ =b (mod 3). Hence
it is worthwhile to note that those students already

have some college level knowledge such as congru-
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ences. NB4 is written as negative statements and its
condition ‘n cannot be a multiple of 3 which is not
a multiple of 9’ is not written clearly enough to be
understood. Hence it is somewhat poorly stated and

so it could be rewritten as:

If 31n and 9 | 7% —n, then show that 9 | .

NC1 is also written as negative statements. Con-
sidering its modification of the structure of the given
problem, NC1 can be considered as nonroutine even
though the result comes directly from simple arithmetic

computations.

V. Conclusion

The present study explored a couple of issues
conceming first year middle school students’ problem
posing practices in a week-long intensive learning
program. The main goal of the discussion here is to
reveal the students’ tendency to pose problems in terms
of their preferences on resources and approaches of
specific solution methods. Hence two basic issues were
investigated: What kinds of problem posing resources
do they prefer? and How do they pose problems related
to specific solution methods? To investigate these
issues, we selected 53 problems related to specific
solution methods on the division algorithm. The pattems
of the problems are classified into 6 types altogether
such as ‘routine,” and ‘nonroutine’ problems associated

with 3 levels of the original version of problems.

1. Routine Problems

As can be discemned from Table V-1, about 80%

of the problems are routine. In fact, slightly more than
half (about 52%) of the problems are of type RA,
whereas about 26% of them are of type RB and only
about 2% of them are of type RC. Recall that the
difficulty levels of [A], [B], and [C] were rated as
being moderately easy, intermediate, and challenging,
respectively. Hence, based on the analyses conducted
in this study, it can be concluded that if the original
problem gets easier (harder), then it gets easier (harder,
respectively) to generate routine problems.

RAI, RA2, and RA3 involve perfect squares or
cubic numbers or biquadratic numbers, whereas RB1
and RB2 involve divisibility satisfying certain
conditions. They are classified into routine problems
because basically no adaptations are made to [A] or
[B]. It is of interest to note that RA1, RA2, and RA3
could be regarded as computational exercises because
their answers are easy to be found by arithmetic
computations. Moreover, in the solution processes of
RB1 and RB2, the students used the argument of ‘proofs
by contradiction.” Hence the given solution of [B] turned
out helpful for the students in generating such problems.
When it comes to the problems of type RC, it is be
evident that the students’ lack of mathematical content
knowledge on the properties of twin primes would
caused some constraint in their posing problems on

twin primes.

2. Nonroutine Problems

As the data in Table IV-1 show, about 20% of the
problems are nonroutine. In fact, about 8% of the
problems are of type NA, whereas about 10% of them
are of type NB and only about 2% of them are of
type NC. Considering the difficulty levels of the given

problems, it is possible to conclude that if the original
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problem gets harder, then it gets harder to generate
nonroutine problems. Note that the total number of
the nonroutine problems is only about a quarter of
that of the routine problems. As a whole, it can be
concluded that even though the original problem gets
easier, it gets harder to generate nonroutine problems
in the task studied here.

NAL1 is the only problem associated with the concept
of probability and also it is the only problem with
wrong answer. NA2, NB4, and NC1 are written as
negative statements and, in addition, NB4 is the only
poorly stated nonroutine problem. The statements of
NA2, NA3, and NB3 require more than two conditions
to consider such as ‘the product of two consecutive
odd integers,” ‘7 (n*—2 and 7| n®~1,” and “at least
one of a—b, ab, and a+0 is divisible by 3, respectively.
In particular, the process of solving NA4 may
demonstrate the student’s problem posing ability to
extend the problem structures and solution methods.

NBI1 involves the divisibility of 4a(4a+1)(5a+1)
by 3, whereas NB2 involves the divisibility of 3" —2
by 7. Even though there are quite a few problems
on divisibility, NB1 and NB2 have their own features
because of the uncommon patterns of their dividends.
It is also of interest to note that the students solved
NB2 and NB3 by means of congruences, even though
they are not within the scope of school mathematics

curriculum,

3. Overview of Problems

As indicated in Table IV-1, the problems are
compared to each other with respect to their problem
types. Although it is not possible to know precisely
the tendency of the student’s problem posing practices,
the accumulated results in this study suggest that almost

all students are able to pose appropriate mathematical
problems with suitable solution methods.
Regardless of the routine and nonroutine problems,
RC1 and NB4 are somewhat poorly stated. Thus it
can be concluded that nearly 96% of the problems
are well-posed in terms of problem structures and
solution methods. Since the problems in ‘routine’ and
‘nonroutine’ categories do not have the same features,
it is difficult to compare them based on the same
criterion mentioned in Section 4, Chapter 3. However,
it is evident that there are some relationships between
the distribution of the problems and their problem types.
The distribution of routine problems is biased by RAI,
RA2, and RB1 because about 69% of all the problems
in this study are similar to them, whereas nonroutine
problems except NA1 are somewhat fairly distributed
with respect to their problem types. It is of interest
to note that nearly 96% of the problems are of types
RA or RB or NA or NB and only about 4% of the
problems are of types RC or NC. The exact reason
of the imbalance of the distribution of the problems
is not revealed by this study, however it might be
reasonable to conclude that it is most likely due to
the fact that the contents of [A] and [B] are easily
discussed topics of mathematics curriculum in gifted
education, whereas the content of [C] is neither within
the scope of school mathematics curriculum nor easily
accessible resource by the students. Hence the students’
lack of mathematical content knowledge or substantial
learning experiences on the properties of twin primes
would caused some constraint in their problem posing.
Now as far as students” solution methods concerned,
most approaches turn out suitable even though some
of them involve somewhat complicated arithmetic
computations. Since NA1 is the only problem with

wrong answer, we conclude that about 98% of the
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students solved their own generated problems correctly.

4. Implications

This study investigates the tendency of the students’
problem posing activities characterized by the pre-
ference and adaptations of problem resources. Although
it is not possible to know precisely the patterns of
the student’s problem posing practices in the study
reported here, an effective students’ problem posing
practices can be suggested based on the results of our
investigation. According to Silver et al. (1996) middle
school teachers and prospective secondary school
teachers’ lack of substantial educational experience
with problem posing was not a barrier to their being
able to use problem posing with their students. Hence,
it is mecessary for teachers in gifted eduction to pose
problems so that their students also would have
substantial experiences with problem posing within
school mathematics curriculum.

While the simple task used in this study provides
some aspects of the students’ problem posing activities
in a week-long intensive learning program, there are
several ways in which it could be improved:

First, since the original version of problems related
to specific solution methods on the division algorithm
played crucial roles in this problem posing activity,
it seems important to provide the students with suitable
opportunities for generating their own problems based
on well selected original version of problems or
resources with respect to the problem types and features
indicated as aspects of problem posing discussed in
NCTM (1991).

Second, the fact that more than four of every five
problems (43 out of 53 problems) are routine suggests

that most students need to enhance flexibility in their

adaptations or modifications of given problems to
construct or generate their own problems. Hence it
would be beneficial to run problem posing activities
not only in the intensive leaming and but in regular
in-class learning so that the students have more
substantial opportunities to pose their own problems
as English (1997) pointed out that students’ problem
posing should come an important learning process
within total mathematics curriculum not just within
a single program of activities.

Third, since the tendency of the students’ problem
posing performances in this study is evaluated by
examining the patterns of the problems related to
specific solution methods on the division algorithm,
it is evident that students need to broaden the types
of problem posing experiences in dealing with more

general and informal situations.
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