Contactless Fingerprint Recognition Based on LDP

LDP 기반 비접촉식 지문 인식

  • 강병준 (현대모비스 기술연구소 메카선행연구팀) ;
  • 박강령 (동국대학교 전자전기공학부, 생체인식연구센터) ;
  • 유장희 (한국전자통신연구원 휴먼인식기술연구팀) ;
  • 문기영 (한국전자통신연구원 휴먼인식기술연구팀) ;
  • 김정녀 (한국전자통신연구원 휴먼인식기술연구팀) ;
  • 신재호 (동국대학교 전자전기공학부)
  • Received : 2010.03.11
  • Accepted : 2010.06.17
  • Published : 2010.09.30

Abstract

Fingerprint recognition is a biometric technology to identify individual by using fingerprint features such ridges and valleys. Most fingerprint systems perform the recognition based on minutiae points after acquiring a fingerprint image from contact type sensor. They have an advantage of acquiring a clear image of uniform size by touching finger on the sensor. However, they have the problems of the image quality can be reduced in case of severely dry or wet finger due to the variations of touching pressure and latent fingerprint on the sensor. To solve these problems, the contactless capturing devices for a fingerprint image was introduced in previous works. However, the accuracy of detecting minutiae points and recognition performance are reduced due to the degradation of image quality by the illumination variation. So, this paper proposes a new LDP-based fingerprint recognition method. It can effectively extract fingerprint patterns of iterative ridges and valleys. After producing histograms of the binary codes which are extracted by the LDP method, chi square distance between the enrolled and input feature histograms is calculated. The calculated chi square distance is used as the score of fingerprint recognition. As the experimental results, the EER of the proposed approach is reduced by 0.521% in comparison with that of the previous LBP-based fingerprint recognition approach.

지문인식은 융선과 골로 이루어진 지문 정보를 이용하여 개인의 신원을 식별하는 바이오인식 기술이다. 대부분의 지문인식 시스템들은 접촉식 센서를 이용하여 지문 영상을 획득한 후, 지문의 특징점을 검출하여 인식을 수행한다. 접촉식 지문 인식은 센서와 지문과의 접촉으러 인해 동일한 표기의 선명한 영상을 얻을 수 있는 장점을 지닌다. 하지만, 사용자의 손가락과 센서의 접촉 입력 차이에 의해 상당히 건조한 지문이나 습한 지문의 경우 지문 영상의 품질이 떨어질 수 있는 가능성이 있고, 센서에 남아있는 잔존 지문 정보로부터 사용자의 지문이 유출될 수 있는 문제점이 있다. 이를 해결하기 위해 비접촉식 지문인식 장비들이 제안되고 있지만 비접촉식으로 지문 영상을 취득할 경우, 조명 변화에 의해 영상의 품질이 훼손되어 지문 특징점 오검출 증가와 함께 인식률 감소의 문제가 발생된다. 따라서 본 논문에서는 조명 변화에 강인한 LDP(Local Derivative Pattern) 기반의 비접촉식 지문인식 방법을 제안한다. LDP 방법을 기반으로 지문의 융선과 골이 반복되는 특정 패턴을 효율적으로 추출하였으며, 추출된 특정코드에 대한 히스토그램을 구성한 후 카이 제곱 거리를 측정하여 최종적으로 개인의 신원을 식별하였다. 실험 결과, 제안하는 LDP 기반의 비접촉식 지문인식 방법은 기존의 LBP 기반의 방법보다 EER(Equal Error Rate)이 0.521% 만큼 감소하였다.

Keywords

References

  1. 반성범, 문지현, 정용화, 김학일, "지문 인식 기술 동향," 전자통신동향분석, 제16권, 제5호, pp. 46-54.
  2. A. Jain, L. Hong, and R. Bolle, "On-line Fingerprint Verification," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.19, No.4, pp.302-314, 1997. https://doi.org/10.1109/34.587996
  3. N. Sharma, and J. Lee, "Fingerprint Minutiae Matching Algorithm using Distance Histogram of Neighborhood," Journal of Korea Multimedia Society, Vol.10, No.12, pp.1577-1584, 2007.
  4. A. K. Jain, A. Ross, and S. Prabhakar, "An Introduction to Biometric Recognition," IEEE Transactions on Circuits and Systems for Video Technology, Vol.14, No.1, pp.4-19, Jan. 2004. https://doi.org/10.1109/TCSVT.2003.818349
  5. G. Parziale, and Y. Chen, "Advanced Technologies for Touchless Fingerprint Recognition," Handbook of Remote Biometrics, pp.83-109, 2009.
  6. C. Lee, S. Lee and J. Kim, "A Study of Touchless Fingerprint Recognition System," Lecture Notes in Computer Science, Vol. 4109, pp.358-365, 2006.
  7. J. Palma, C, Liessner, and S. Mil'Shtein, "Contactless Optical Scanning of Fingerprints with $180^{\circ}$ View," Scanning, Vol.28, issue 6, pp.301-304, 2007. https://doi.org/10.1002/sca.4950280601
  8. B. J. Kang, H. C. Lee, K. R. Park, and J. N. Kim, "Multimodal Biometrics Based on the Fusion of Fingerprint and Finger-vein Recognition." IET computer vision, submitted.
  9. T. Ojala, M. Pietikainen, and D. Harwood, "A Comparative Study of Texture Measures with Classification Based on Feature Distributions," Pattern Recognition, Vol.29, issue. 1, pp.51-59, 1996 https://doi.org/10.1016/0031-3203(95)00067-4
  10. T. Ojala, M. Pietikainen, and T. Maenpaa, "Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.24, No.7, pp.971-987, 2002. https://doi.org/10.1109/TPAMI.2002.1017623
  11. E. C. Lee, H. C. Lee, and K. R. Park, "Finger Vein Recognition by Using Minutia Based Alignment and Local Binary Pattern-based Feature Extraction," International Journal of Imaging Systems and Technology, Vol.19, issue 3, pp.179-186, 2009. https://doi.org/10.1002/ima.20193
  12. H. C. Lee, B. J. Kang, E. C. Lee, and K. R. Park, "Finger Vein Recognition by Using Weighted LBP Code Based on SVM," Journal of Zhejiang University-Science C, Vol.11, No.7, pp.514-524, July 2010. https://doi.org/10.1631/jzus.C0910550
  13. T. Ahonen, A. Hadid, and M. Pietikainen, "Face Description with Local Binary Patterns: Application to Face Recognition," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.28, No.12, pp.2037-2041, 2006. https://doi.org/10.1109/TPAMI.2006.244
  14. G. Guo, and M. J. Jones, "Iris Extraction Based on Intensity Gradient and Texture Difference," Proc. of the IEEE Workshop on Applications of Computer Vision, pp.1-6, 2008.
  15. H. Yang, and Y. Wang, "A LBP-based Face Recognition Method with Hamming Distance Constraint," Proc. of the 4th International Conference on Image and Graphics, pp.645- 649, 2007.
  16. B. Zhang, Y. Gao, S. Zhao, and J. Liu, "Local Derivative Pattern Versus Local Binary Pattern: Face Recognition With High-Order Local Pattern Descriptor," IEEE Transaction on Image Processing, Vol.19, No.2, 2010.
  17. H. Ling, D. W. and Jacobs, "Using the Inner- Distance for Classification of Articulated Shapes," Proc. of the 2005 IEEE Conference on Computer Vision and Pattern Recognition, Vol.2, pp.719-726, 2005.
  18. Logitech QuickCam, http://www.logitech.com (accessed on 2010.02.12)
  19. R C. Gonzalez, and R. E. Woods, Digital Image Processing 3rd edition, Pearson Prentice Hall, 2008.
  20. 심재창, 김세영, 최미순, 김익동, "양면 지문 입력 방법," 한국멀티미디어학회논문지, 제11권, 제3호, pp.323-330, 2008년.
  21. J. R. Parker, Practical Computer Vision using C, Wiley Computer Publishing, 1994.
  22. M. Sonka, V. Hlavac, and R. Boyle, "Image Processing, Analysis, and Machine Vision," CL-Engineering, 1998.
  23. L. Wang, G. Leedham, and D. S.Cho, "Minutiae Feature Analysis for Infrared Hand Vein Pattern Biometrics," Pattern Recognition, Vol.41, No.3, pp.920-929, 2008. https://doi.org/10.1016/j.patcog.2007.07.012