DOI QR코드

DOI QR Code

Development of a tide-simulating apparatus for macroalgae

  • Kim, Jang-K. (Departments of Ecology and Evolutionary Biology and Marine Sciences, University of Connecticut) ;
  • Yarish, Charles (Departments of Ecology and Evolutionary Biology and Marine Sciences, University of Connecticut)
  • Published : 2010.03.01

Abstract

A tide-simulating apparatus was developed for culturing marine macroalgae. The objective of this study was to introduce a novel tide-simulating apparatus that can simulate a diurnal or semi-diurnal tidal cycle in the laboratory. In this apparatus, the seaweeds are move up and down and the water level remains the same during the simulated tidal cycle. The apparatus consists of 18 cylindrical culture tanks (3 blocks $\times$ 6 culture tanks) with 12 cm diameter and 24.5 cm long containing up to 2.5 L of seawater. There is a horizontal plate which covered all 18 culture tanks, and it is raised and lowered by a programmable motor that can regulate exposure time. In one application, seaweeds are attached to braided twine hung on Plexiglas air-tubing. The air-tubing is attached to a lid that is set on a horizontal plate. This apparatus is made of colorless Plexiglas to maximize light transmittance. This apparatus is easily disassembled and transportable to any indoor laboratory, wet laboratory, greenhouse, etc. This apparatus also offers considerable flexibility in terms of design. The size of culture tank can be redesigned by either increasing the height of cylinder or/and using a different diameter of cylindrical Plexiglas, therefore, larger/taller thalli can be cultivated. Growth rates of three eulittoral Porphyra species from different tidal elevations have been compared using this device.

Keywords

References

  1. Allender, B. M. 1977. Effects of emersion and tempera-ture upon growth of the tropical brown alga Padina japonica, using a tide-simulation apparatus. Mar. Biol. 40:95-100. https://doi.org/10.1007/BF00396253
  2. Baker, S. M. 1909. On the causes of the zoning of brown seaweeds on the seashore. New Phytol. 8:196-202. https://doi.org/10.1111/j.1469-8137.1909.tb05523.x
  3. Baker, S. M. 1910. On the causes of the zoning of brown seaweeds on the seashore. II. The effect of periodic exposure on the expulsion of gametes and on the germination of the oospore. New Phytol. 9:54-67. https://doi.org/10.1111/j.1469-8137.1910.tb05553.x
  4. Beach, K. S. & Smith, C. M. 1997. Ecophysiology of a tropical rhodophyte: III. Recovery from emersion stresses in Ahnfeltiopsis concinna (J. Ag.) Silva et DeCew. J. Exp. Mar. Biol. Ecol. 211:151-167. https://doi.org/10.1016/S0022-0981(96)02721-9
  5. Bracher, R. 1919. Observations on Euglena deses. Ann. Bot. 33:93-108.
  6. Carmona, R., Kraemer, G. P. & Yarish, C. 2006. Exploring Northeast American and Asian species of Porphyra for use in an integrated finfish-algal aquaculture system. Aquaculture 252:54-65.
  7. Chapman, A. R. O. 1986. Population and community ecology of seaweeds. In Blaxter J. H. S & Southwood A. J. (Eds.) Advances in Marine Biology. Academic Press, London, pp. 1-161.
  8. Davison, I. R. & Pearson, G. A. 1996. Stress tolerance in intertidal seaweeds. J. Phycol. 32:197-211. https://doi.org/10.1111/j.0022-3646.1996.00197.x
  9. Dring, M. J. 1992. The biology of marine plants. Cambridge University Press, Cambridge, 199 pp.
  10. Dring, M. J. & Brown, F. A. 1982. Photosynthesis of intertidal brown algae during and after periods of emersion: a renewed search for physiological causes of zonation. Mar. Ecol. Prog. Ser. 8: 301-308. https://doi.org/10.3354/meps008301
  11. Edwards, P. 1977. An investigation of the vertical distribution of selected benthic marine algae with a tide-simulating apparatus. J. Phycol. 13:62-68.
  12. Gao, K., Ji, Y. & Aruga, Y. 1999. Relationship of $CO_2$ concentrations to photosynthesis of intertidal macroalgae during emersion. Hydrobiologia 398/399:355-359. https://doi.org/10.1023/A:1017072303189
  13. Gao, Y., Smith, G. J. & Alberte, R. S. 1993. Nitrate reduc-tase from the marine diatom Skeletonema costatum: biochemical and immunological characterization. Plant Physiol.103:1437-1445. https://doi.org/10.1104/pp.103.4.1437
  14. Hurd, C. L. & Dring, M. J. 1990. Phosphate uptake by intertidal algae in relation to zonation and season. Mar. Biol. 107:281-289. https://doi.org/10.1007/BF01319827
  15. Hurd, C. L. & Dring, M. J. 1991. Desiccation and phos-phate uptake by intertidal fucoid algae in relation to zonation. Br. Phycol. J. 26:327-333. https://doi.org/10.1080/00071619100650291
  16. Ji, Y. & Tanaka, J. 2002. Effect of desiccation on the photosynthesis of seaweeds from the intertidal zone in Honshu, Japan. Phycol. Res. 50:145-153. https://doi.org/10.1111/j.1440-1835.2002.tb00145.x
  17. Johnson, W. S., Gigon, A., Gulmon, S. L. & Mooney, H. A. 1974. Comparative photosynthetic capacities of intertidal algae under exposed and submerged conditions. Ecology 55:450-453. https://doi.org/10.2307/1935235
  18. Johnston, A. M. & Raven, J. A. 1986. The analysis of photosynthesis in air and water of Ascophyllum nodosum (L.) Le Jol. Oecologia 69:288-295. https://doi.org/10.1007/BF00377636
  19. Kim, J. K., Kraemer, G. P. & Yarish, C. 2008. Physiological activity of Porphyra in relation to zonation. J. Exp. Mar. Biol. Ecol. 365:75-85. https://doi.org/10.1016/j.jembe.2008.07.040
  20. Kim, J. K., Kraemer, G. P. & Yarish, C. 2009. Comparison of growth and nitrate uptake by New England Porphyra species from different tidal elevations in relation to desiccation. Phycol. Res. 57:152-157. https://doi.org/10.1111/j.1440-1835.2009.00533.x
  21. Lewis, J. R. 1964. The ecology of rocky shores. English Universities Press, London, 323 pp.
  22. Lipkin, Y., Beer, S. & Eshel, A. 1993. The ability of Porphyra linearis (Rhodophyta) tolerate prolonged periods of desiccation. Bot. Mar. 36:517-523. https://doi.org/10.1515/botm.1993.36.6.517
  23. Luning, K. 1990. Seaweeds: their environment, biogeography and ecophysiology. John Wiley and Sons, New York, 527 pp.
  24. Ott, F. D. 1965. Synthetic media and techniques for the xenic cultivation of marine algae and flagellate. Va. J. Sci. 16:205-218.
  25. Quadir, A., Harrison, P. J. & DeWreede, R. E. 1979. The effects of emergence and submergence on the photosynthesis and respiration of marine macrophytes. Phycologia 18:83-88. https://doi.org/10.2216/i0031-8884-18-1-83.1
  26. Sahoo, D. & Yarish, C. 2005. Mariculture of seaweeds. In Anderson, R. A. (Ed.), Algal Culturing Techniques. Elsevier Academic Press, London, pp. 219-237.
  27. Thomas, T. E., Turpin, D. H. & Harrison, P. J. 1987. Desiccation enhanced nitrogen uptake rates in intertidal seaweeds. Mar. Biol. 94:293-298. https://doi.org/10.1007/BF00392943
  28. Townsend, C. & Lawson, G. W. 1972. Preliminary results factors causing zonation in Enteromorpha using a tide simulating apparatus. J. Exp. Mar. Biol. Ecol. 8:265-276. https://doi.org/10.1016/0022-0981(72)90066-4
  29. Underwood, A. J. 1972. Sinusoidal tide models: design, construction and laboratory performance. J. Exp. Mar. Biol. Ecol. 8:101-111. https://doi.org/10.1016/0022-0981(72)90013-5
  30. Zaneveld, J. S. 1969. Factors controlling the delimination of littoral benthic marine algal zonation. Am. Zool. 9:367-391.

Cited by

  1. Emersion Induces Nitrogen Release and Alteration of Nitrogen Metabolism in the Intertidal Genus Porphyra vol.8, pp.7, 2013, https://doi.org/10.1371/journal.pone.0069961
  2. Metabolic plasticity of nitrogen assimilation by Porphyra umbilicalis (Linnaeus) Kützing vol.11, pp.4, 2012, https://doi.org/10.1007/s11802-012-2116-2