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n n U∞∇Φ⋅ = ⋅                                     (4) 
 
where n is the outward unit normal vector to the boundary.  
Second, kinematic and dynamic boundary conditions are 
applied to the cavity surface as follows.  
 

( , ) 0Df x y
Dt

=                                    (5) 

 
vp p=                                         (6) 

 
where f(x, y) is a cavity surface and pv is the vapor pressure 
of fluid, the pressure inside the supercavity.  

In addition, we apply that the cavity detached from the 
body is naturally closed at the end of the cavity. A closed 
body with constant pressure around its surface does not 
exist in an exact potential flow so that one should apply a 
proper termination condition at the end of the cavity. 
Several termination models have been suggested 
representatively by Kreise (1946), Wu (1972) and Lee 
(1989). Lee suggested the linear termination model stating 
that the cavity shape is dependent only on the source 
strength and the sum of strengths of the sources should be 
zero to make the surface close. To apply the linear model, it 
is necessary to present the stagnation point at the after end 
of the cavity as in the case of real flow around a thick round 
trailing edge. This is a dominant factor in symmetric flow 
problem. In this flow, the stagnation point is coincident with 
the after end point of the cavity. Considering that the 
velocity on the cavity surface is constant except at the end 
of the cavity, one may apply that the cavity shape is elliptic 
at the end of it. It is applied in the present study and the 
nonlinear cavity shape may therefore be found with 
minimum number of iterations. Here, the cavity shape is 
initially assumed to be elliptic.  

We get a relation between the pressure and the velocity 
from the Bernoulli’s equation: 
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2
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From Equation (7), we can derive the relation between 

the pressure coefficient and the cavitation number on the 
cavity surface:  
 

2 21 1
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v
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p pp pC
U U

σ
ρ ρ
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∞ ∞

−−
− = > ≡                     (8) 

 
Equation (8) implies that if the cavitation number (σ) is 

smaller than the pressure coefficient (-Cp), then cavitation 
occurs. If the pressure on the free streamline is equal to the 
ambient pressure, the length of the cavity is finite. It says 
the cavity length depends on the cavitation number(σ). 
Cavity length is obtained through an iteration process in the 
boundary value problem. We, here, assume that the cavity 

length and compute the pressure along the initially guessed 
cavity surface until the computed cavitation number is equal to 
that of Equation (8). 
 
 
 
DISCRETIZATION OF SINGULARITIES  
 

In a boundary value problem, velocity potentials induced 
by source and dipole distributions are expressed as follow:  
 

( ) log
2S
q s rdsφ
π

= ∫                                  (9) 

( ) log
2D

s r ds
n

μφ
π

∂
=

∂∫                              (10)  

 
where r = x − ξ is the distance between the field and singular 
point and q(ξ), μ(ξ) are strengths of distributed source and 
source respectively.  

Using Green’s 1st and 2nd theorems, the equation governing 
the internal flow can be expressed as an integral equation as 
follow: distribute dipoles on both body and cavity surfaces and 
also distributions of the sources on the cavity surface.  
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where SB, SC denote the body and cavity surface respectively.  

The normal velocity component of the induced tangential 
velocity (v) can be expressed in terms of the product of the 
oncoming velocity and the first derivative of cavity thickness:   
 

cdtv U
ds∞=                                       (12) 

 
Integrating Equation (12) yields the cavity thickness and 

we adopt it as an alternative form of the cavity closure 
condition, which states that  
 

0
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We calculate the integral equation, Equation (11), along 

the discretized surfaces on which sources and dipoles are 
distributed: 
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where ND, NS indicate the number of dipole and source panels 
(pj, pk). 
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