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Experimental and numerical studies on super-cavitating flow of axisymmetric cavitators
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ABSTRACT: Recently underwater systems moving at high speed such as a super-cavitating torpedo have been studied for their
practical advantage of the dramatic drag reduction. In this study we are focusing our attention on super-cavitating flows around
axisymmetric cavitators. A numerical method based on inviscid flow is developed and the results for several shapes of the cavitator
are presented. First using a potential based boundary element method, we find the shape of the cavitator yielding a sufficiently
large enough cavity to surround the body. Second, numerical predictions of supercavity are validated by comparing with
experimental observations carried out in a high speed cavitation tunnel at Chungnam National University (CNU CT).
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INTRODUCTION

If the speed of the submerged body is sufficiently high,
and the local pressure drops to the vapor pressure of the fluid
then cavitation occurs on the body surface. As the speed goes
up further and the cavity is large enough to cover the entire
body then it is called supercavitation. The drag force acting
on a supercavitating body is very low compared with a fully
wetted body because the friction drag in the air is nearly
1,000 times less in that of the water. One tries to apply the
main advantage of the supercavitation, drag reduction, to high
speed underwater vehicles like a torpedo.

In this study, we focus our attention on a cavitator
which initiates and generates the supercavity. We firstly
consider various symmetric wedges and predict cavity
length using a potential based boundary element method.
Predicted results are validated by comparing with an
analytic solution for the supercavity flow around the
symmetric body (Newman, 1977). We carried out two
dimensional experiments in a high speed cavitation tunnel
and observed the supercavity occurring on the symmetric
wedge. Numerical results are compared with experimental
measurements. The present method is capable of predicting
the supercavity sufficiently well and it can be a useful tool
to design a super-cavitator

NUMERICAL FORMULATION

We assume that the flow is inviscid, incompressible and
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irrotational. The total velocity (7) is expressed in terms of the
total velocity potential (@), which takes the form:

V=vod=V(U, -X+¢) )

where U, is the on-coming velocity, X is the position vector
and ¢ is the perturbed velocity potential.

The assumed flow should be satisfied with conservation of
the mass and it yields the Laplace equation as a governing
equation:

V-V =V®=0 ()

Fig. 1 Symmetric body (cavitator) and cavity surface.

We consider two dimensional symmetric body showing in
Fig. 1. Here Sy and Sc denote body and cavity surface
respectively. Boundary conditions are applied and the flow is
uniquely defined. Firstly, the flow is not perturbed at infinity
of the assumed flow and also it does not penetrate the body
surface, which states in Equation (3) and (4).

mV®d =U,
r—ow (3)
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VO-n=7-U, @

where 7 is the outward unit normal vector to the boundary.
Second, kinematic and dynamic boundary conditions are
applied to the cavity surface as follows.

Df(x,y) -0 5)
Dt
pP=p, (6)

where f(x, y) is a cavity surface and p, is the vapor pressure
of fluid, the pressure inside the supercavity.

In addition, we apply that the cavity detached from the
body is naturally closed at the end of the cavity. A closed
body with constant pressure around its surface does not
exist in an exact potential flow so that one should apply a
proper termination condition at the end of the cavity.
Several termination models have been suggested
representatively by Kreise (1946), Wu (1972) and Lee
(1989). Lee suggested the linear termination model stating
that the cavity shape is dependent only on the source
strength and the sum of strengths of the sources should be
zero to make the surface close. To apply the linear model, it
is necessary to present the stagnation point at the after end
of the cavity as in the case of real flow around a thick round
trailing edge. This is a dominant factor in symmetric flow
problem. In this flow, the stagnation point is coincident with
the after end point of the cavity. Considering that the
velocity on the cavity surface is constant except at the end
of the cavity, one may apply that the cavity shape is elliptic
at the end of it. It is applied in the present study and the
nonlinear cavity shape may therefore be found with
minimum number of iterations. Here, the cavity shape is
initially assumed to be elliptic.

We get a relation between the pressure and the velocity
from the Bernoulli’s equation:

:_(VJ ™
%pUi U,

From Equation (7), we can derive the relation between
the pressure coefficient and the cavitation number on the
cavity surface:

—-C, = > =0 (®
Y% %pr

Equation (8) implies that if the cavitation number (o) is
smaller than the pressure coefficient (-C,), then cavitation
occurs. If the pressure on the free streamline is equal to the
ambient pressure, the length of the cavity is finite. It says
the cavity length depends on the cavitation number(o).
Cavity length is obtained through an iteration process in the
boundary value problem. We, here, assume that the cavity
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length and compute the pressure along the initially guessed
cavity surface until the computed cavitation number is equal to
that of Equation (8).

DISCRETIZATION OF SINGULARITIES

In a boundary value problem, velocity potentials induced
by source and dipole distributions are expressed as follow:

@ = I® log rds 9)
J-,u(s) Glogr (10)
2r  On

where r = x — ¢ is the distance between the field and singular
point and ¢(&), w(&) are strengths of distributed source and
source respectively.

Using Green’s 1% and 2™ theorems, the equation governing
the internal flow can be expressed as an integral equation as
follow: distribute dipoles on both body and cavity surfaces and
also distributions of the sources on the cavity surface.

u(s) Ologr q(s) 11
+ | S s j ~ log rds (11)

Sp+Se

where Sp, Sc denote the body and cavity surface respectively.
The normal velocity component of the induced tangential

velocity (v) can be expressed in terms of the product of the

oncoming velocity and the first derivative of cavity thickness:

y=u, % (12)
ds

Integrating Equation (12) yields the cavity thickness and
we adopt it as an alternative form of the cavity closure
condition, which states that

tc(l)):j.?ds:o (13)

We calculate the integral equation, Equation (11), along
the discretized surfaces on which sources and dipoles are
distributed:

/U ﬁlor
¢ =U, /J‘ g
117[

+z 9 Ilogrds (14)

k=1
i=1,23,--oN

where Np, Ny indicate the number of dipole and source panels

(Pj, DPi)-
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We assume that the strengths of sources and dipoles are
constant along each panel. We apply the detachment condition of
the cavity at the trailing edge of the body, which states that the
curvature of a free stream line at the starting point of the cavity is
equal to the slope of the body. Consequently the source strength
just behind the body can be calculated, and then Equation (14) is
expressed in the form of applying the above formulation to the
symmetric body, the number of singularity panels of
unknown strengths is reduced by half.

0=¢ = /1, J‘Glogr
112” : (15)
+ijlogrds q"
b s
P PNS

As strengths of normal dipoles and sources are found, a
new function for the cavity thickness is calculated from
Equation (13), and it is added in the normal direction to the
previous cavity surface. Singularities are placed into the
newly generated surfaces and this process is conducted
iteratively until the convergence criterion is satisfied.

EXPERIMENTAL OBSERVARIONS

Cavitation generated on a symmetric wedge has been
investigated throughout experimental observations carried
in a high speed cavitation tunnel at Chungnam National
University, CNU CT. Fig. 2 shows the tunnel and its
specification is shown in Table 1.
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Fig.2 CNU hlgh speed cavitation tunnel
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Table 1 Specification of the cavitation tunnel.
(guineé : 6.8m % 2.0m (Srlr)lf;g 15m/s
T(e];t s:cgsn 120mm > 50mm Cﬁ;ﬁgeo' 0.4~5.0
Pres§ure |0kPa Pressure 300iPa
(min) (max)

Fig. 3 shows the test section in where a wedge (68.7mm

length and 18.1mm thickness) is placed.

i

Fig. 3 Test section of the cavitation tunnel.

RESULTS AND DISCUSSIONS

Fig. 4 shows a typical result from the present numerical

method. It gives that pressure and induced velocity distributions
on both of body and cavity surfaces. One can read that the body
having an angle of 15° generates a cavity behind it of twice the
wedge length at the cavitation number 0.27.

Predicted cavity length is compared with an analytic

solution in Fig. 5. Newman (1997) derived the relation
between the cavitation number () and the cavity length (/) for
a two dimensional symmetric body:

! 12
Zol+| (l—jlj . (t)dt =0
0

(16)

where y,(¢)is the half thickness of the body. Present results

are in good agreement with analytic solution as the cavitation
number decreases.
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Fig. 4 Typical result of the present method: pressure,
velocity distributions and super cavitation generated by a
wedge at a certain cavitation number.
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Fig. 5 Comparison of the cavity lengths between analytic
and numerical solutions for a wedge described in Fig. 4.

Fig. 6 shows predicted cavities for different wedge
shapes, relatively thin and blunt: (a) is for 45° and (b) is for
90° wedge angles. Both cases give the same cavity length, 9
and 10 times as long as the body. However, it is clearly
shown that the thin wedge (smaller angle) needs low
cavitation number to guarantee the similar length of the
cavity comparing with the blunt wedge.
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(b) wedge angle: 90°.

Fig. 6 Predicted cavity shapes for different bodies.

Left column of Fig. 7 shows growth of the cavity from the
wedge sequentially. As the cavitation number decreases from
0.67 to 0.23, cavity length increases from 0.5 to 2.5 times as
long as the body. Right column of Fig. 7 shows the observed
cavities at the same cavitation numbers as with the predictions.
It was difficult to measure the end of the cavity apparently in
this experimental trial. Comparing between them, it shows that
the present method predicts well the cavity shape and its
length as well. We are planning to record the cavity growth
with the high-speed camera and also to figure. out the best way
to measure the cavity length exactly.

Fig. 8 shows the cavity of the axisymmetric body which
has 45° corn angle. Here the cavitation number is 0.35. We are
now carrying out the experimental observations for the same
body and it will be presented in the conference.
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Fig. 7 Predicted (left column) and observed (right column) cavity growths as the cavitation number decreases from 0.67 to 0.23.
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Fig. 8 Predicted cavity for axisymmetric body (corn angle is
45°) at 0 =0.35.

CONCLUSIONS

In this study, a numerical method to predict supercavitation
behind symmetric bodies is presented. Experimental
observations are carried out in a high speed cavitation tunnel.
The results show that the present method is capable of
predicting the cavity shape and its length as well. At the
design stage of the underwater supercavitating body, it is
important to find a cavitator ensuring the sufficient cavity
length covering the body. Consequently, the present method
can be a useful design tool of the super cavitator.
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