
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4 NO. 6, December 2010 1311
Copyright ⓒ 2010 KSII

A preliminary version of this paper appeared in OPODIS 2008, December 15-18, Luxor, Egypt. This research was
supported by the MKE (The Ministry of Knowledge Economy), the Korean government, under the ITRC
(Information Technology Research Center) support program supervised by the NIPA (National IT Industry
Promotion Agency)" (NIPA-2010-(C1090-1011-0004))

DOI: 10.3837/tiis.2010.12.019

ELiSyR: Efficient, Lightweight and
Sybil-Resilient File Search in P2P Networks

Hyeong S. Kim1, Eunjin(EJ) Jung2 and Heon Y. Yeom1
1 School of Computer Science and Engineering, Seoul National University

Seoul, Korea
[e-mail: {hskim,yeom}@dcslab.snu.ac.kr]

2 Department of Computer Science, University of San Francisco
San Francisco, USA

[e-mail: ejung@cs.usfca.edu]
*Corresponding author: Hyeong S. Kim

Received February 5, 2010; revised July 9, 2010; accepted October 27, 2010;

published December 23, 2010

Abstract

Peer-to-peer (P2P) networks consume the most bandwidth in the current Internet and file
sharing accounts for the majority of the P2P traffic. Thus it is important for a P2P file sharing
application to be efficient in bandwidth consumption. Bandwidth consumption as much as
downloaded file sizes is inevitable, but those in file search and bad downloads, e.g. wrong,
corrupted, or malicious file downloads, are overheads. In this paper, we target to reduce these
overheads even in the presence of high volume of malicious users and their bad files. Sybil
attacks are the example of such hostile environment. Sybil attacker creates a large number of
identities (Sybil nodes) and unfairly influences the system. When a large portion of the system
is subverted, either in terms of the number of users or the number of files shared in the system,
the overheads due to the bad downloads rapidly increase. We propose ELiSyR, a file search
protocol that can tolerate such a hostile environment. ELiSyR uses social networks for P2P file
search and finds benign files in 71% of searches even when more than half of the users are
malicious. Furthermore, ELiSyR provides similar success with less bandwidth than other
general efforts against Sybil attacks. We compare our algorithm to SybilGuard, SybilLimit
and EigenTrust in terms of bandwidth consumption and the likelihood of bad downloads. Our
algorithm shows lower bandwidth consumption, similar chances of bad downloads and fairer
distribution of computation loads than these general efforts. In return, our algorithm takes
more rounds of search than them. However the time required for search is usually much less
than the time required for downloads, so the delay in search is justifiable compared to the cost
of bad downloads and subsequent re-search and downloads.

Keywords: P2p file sharing, Sybil-resilient, p2p file search, sybil attack, load balancing

1312 Kim et al.: ELiSyR: Efficient, Lightweight and Sybil-Resilient File Search in P2P Networks

1. Introduction

Peer-to-peer (P2P) networks consume the most bandwidth in the current Internet and file
sharing accounts for the majority of the P2P traffic. iPoque reports that 49% to 83% of the
Internet traffic in file world-wide regions in August and September 2007 is P2P, and most of
them are file sharing applications like eDonkey and BitTorrent [1]. BitTorrent self-claims to
have more than 135 million users [2]. These numbers show that a P2P file sharing application
must be efficient in bandwidth consumption.

Bandwidth consumption in file downloading is inevitable. However, bandwidth
consumption in file search and bad downloads, e.g. wrong, corrupted, or even
malware-infested file downloads, are overheads. In May 2008, a fake MP3 file contained
Trojan horse and infected 27% of PCs among those under McAfee’s monitoring [3]. In the
same report, McAfee also notes that it detected more than half a million adware programs
disguising as media files in less than a week. Downloading these files causes unnecessary
bandwidth consumption. In this paper, we target to reduce these overheads even in the
presence of high volume (even more than half in some cases) of malicious users and their bad
files. Sybil attacks are the example of such hostile environment.

In many distributed systems, including P2P systems, a user is often not limited to one
unique identity in the system but may create multiple identities with little cost. A malicious
user may use this large number of identities (nodes) to unfairly influence the system. This is
called the Sybil Attack. The “link spamming” attack to PageRank [4] is an example of Sybil
attack, where a single user boosts his reputation by creating a large number of fake (Sybil)
identities and giving himself good feedback [5]. Reputation systems based on peer reviews,
such as the user rating in eBay, have been a major target of Sybil attacks. Fake (Sybil)
accounts were created to boost the seller rating of the attacker or to damage the ratings of other
sellers. A recent attack even uses bots to create Sybil identities for faster and larger-scale
attacks [6]. There have been efforts to prevent Sybil attacks based on social networks, e.g.
SybilGuard [7] and SybilLimit [8], but some of these efforts assume the knowledge of global
topology [9], i.e. every user needs to know every other user’s friends, some require a
substantial work in the setup process [10], and some put unfairly large loads on high-degree
nodes, i.e. users with many friends [7]. In P2P networks, it is unlikely that any user will make
such sacrifice to serve other users.

In this paper, we present a new file search algorithm, ELiSyR that is Efficient, Lightweight,
and Sybil-Resilient. 1) ELiSyR uses social networks for P2P file search and consumes less
bandwidth (thus more efficient) than using the state-of-the-art anti-Sybil mechanisms for file
search, SybilGuard and SybilLimit. In our simulation, ELiSyR consumes less than half of the
total network traffic consumed by SybilGuard or SybilLimit. 2) ELiSyR is lightweight as only
requires each user to maintain a local topology of the social network, namely the degrees of
their immediate friends. This local topology may be obtained from other social networks, such
as graph.facebook.com.. The local topology may also be obtained by piggybacking the degree
information on the file downloads. 3) ELiSyR is also Sybil-resilient. In our simulation, users
download from honest users more than 71% of the time even when more than half of the users
are Sybil.

In the rest of this paper, we assume that the bad downloads happen due to malicious users’
responding to search query with bad files. These bad files may be a different file from what

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 6, December 2010 1313

search query specified, or a malware-infested file. The bad downloads may also happen due to
difficulties in search. A user may choose to download a file based on matching keywords when
in fact the file is not what the user wanted. Search effectiveness in P2P downloads is out of this
paper’s scope and we focus on bad downloads with malicious intentions.

We compare ELiSyR to SybilGuard, SybilLimit and EigenTrust. EigenTrust [11] is a
distributed reputation management system which provides each peer a unique global trust
value based on the peer's history of uploads. We use two metrics, bandwidth consumption and
the ratio of successful downloads. In both metrics, the ELiSyR shows lower bandwidth
consumption, similar ratio of successful downloads and fairer distribution of computation
loads in comparison. . In return, the ELiSyR algorithm takes more time in forwarding search
queries. However, the time required for search is usually much less than the time required for
downloads, so the delay in search is justifiable compared to the cost of bad downloads and
subsequent re-search and downloads.

This paper is organized as follows. Section 2 discusses related work in bandwidth saving in
P2P file searches and defense mechanisms against Sybil attacks. Section 3 explains the
intuition behind our ELiSyR file search algorithm and shows the pseudo-code of the algorithm.
Section 4 explains how the experiments were set up and shows the efficiency, lightweightness
and robustness in hostile environment (Sybil-resilience) of ELiSyR. Finally, Section 5
proposes future work and concludes this paper.

2. Related Work
EigenTrust [11] is a reputation system for file-sharing P2P networks wherein each peer is
assigned a unique global trust value that reflects the experiences of all peers in the network
uploaded to or downloaded from this peer. All peers in the network participate in computing
these values in a distributed and node-symmetric manner. Among various download source
selection methods, we choose the probabilistic algorithm in which not only the upload requests
are distributed among high-trusted nodes, but also favors the uploader with high trust value.
However, theses reputation systems are vulnerable against Sybil attack. One of the hardest
challenges in defending against Sybil attacks is that it is more or less impossible to limit the
number of Sybil identities in the system. To protect against arbitrary failures, traditional
Byzantine fault tolerance protocols rely on that the Byzantine users do not exceed one-third of
the total number of users in the system [12]. However, typical peer-to-peer systems cannot
impose such limitation on the number of Sybil nodes. Sybil attackers may exploit IP
harvesting and even use botnets outside the system to launch an attack to inflate their numbers
in the system.

As mentioned in Section 1, Sybil attack is already pervasive [4][5][6]. A wide variety of
countermeasures have been proposed against Sybil attacks[13]. Systematic and economic
approaches have been applied in order to detect Sybil nodes [14][15]. Though these detection
mechanisms are promising, limiting the effect of Sybil attacks is being accepted as a practical
solution to this attack [7][8][9][10][16].

SybilGuard [7] and SybilLimit [8] take advantage of social relationships between nodes in
the system to limit the damage Sybil nodes can cause, no matter how many Sybil nodes are in
the system. They have the same defense mechanisms. They use random routes in order to
decide whether the peer in question has enough social relationships with other peers. Each
node stores multiple random routes from itself to other nodes as “witnesses” in the verification
process. The witness is the intersection node of two random routes, one from the subject in

1314 Kim et al.: ELiSyR: Efficient, Lightweight and Sybil-Resilient File Search in P2P Networks

question and the other from the verifier. If there are more intersecting nodes than the preset
threshold, then the peer is accepted. In our simulation, we use this feature to help the
downloader select the most trustworthy uploader among those who responded to the query.
We assume that if the number of intersecting nodes of random routes from the downloader and
from the responder is over a given threshold, then the responder is trustworthy.

However, they tend to put high load on high-degree nodes as shown in Section 4. When a
verifier wants to check if a subject is honest or not, the intersection node of two random routes
needs to respond to the verifier to ensure the intersection is not forged by the subject. As a
social network tends to have a non-uniform degree distribution, high-degree nodes tend to
serve as intersection nodes much more often than other users, and thus have higher overhead in
computation and communication. Also, when high-degree nodes are unavailable due to any
transient faults, the system’s acceptance ratio decreases rapidly.

SybilLimit also requires an elaborate setup process. Each node creates multiple routing
tables, goes on multiple random routes and records which random routes from which nodes
passed itself, and the keys associated all these random routes. This setup process may
discourage users from using this service as it causes delay before they start searching and
downloading. Also, users without enough number of pre-established social relationships
(edges) may not be able to use this service altogether, depending on how the threshold is set.

LIP [17] is a technique to identify fake files by mining history logs. They collect the hashes
of contents and compare a new file’s content with existing hashes. If there is a match in hash
and yet the filename is different, then check the lifetime of the file. The shorter its lifetime is,
the more likely this file is to be fake. They check the contents and the file’s lifetime to see
whether the file has been compromised. With proper DB of existing file hashes, LIP can
effectively verify the compromised files. However, LIP requires a comprehensive DB and the
storage requirement is not negligible.

There have been extensive researches on analysis and improvement of the Gnutella-like
flooding search protocols. Saroiu et al. gives a detailed measurement study of the two most
popular peer-to-peer file sharing systems, Napster and Gnutella [18]. A variety of protocols
has been proposed based on random walk models [19][20][21][22][23] and other techniques
[24][25] as alternatives to Gnutella’s query algorithm. Sarshar et al. propose a percolation
search algorithm for locating and retrieving content in random networks with Power-Law and
heavy-tailed degree distributions [19]. They reduce the network bandwidth by utilizing the
high-degree nodes and random walk model. But, they do not consider the unfair load
distribution and Sybil attack.

3. ELiSyR File Search Algorithm
Our intuition for the ELiSyR algorithm is straightforward from our goals: safe search while
being efficient in bandwidth consumption, lightweight in maintenance, and Sybil-resilient
against high volume of malicious users and their bad files. For safe file search and Sybil
resilience, we use social network as our search network: every search query is forwarded to
selected neighbors on social network. We already explained that social networks are widely
used to protect against Sybil attacks. It is well known that the Internet topology and the social
network follow the power-law distribution [26][27]. In such a network, a few nodes have a
high degree, i.e. connected to a large number of nodes. Therefore, if a user A initiates a query
forwarding sequence, the query inherently gravitates towards the better linked members. In
most social networks, the high degree nodes are more connected and therefore have a higher

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 6, December 2010 1315

probability to be attacked [28]. For example, the risk of infection of individuals in social
networks can be identified by measuring the degree of each node where high degree nodes are
more vulnerable to infection [29]. Traffic on a network also induces high loads on high degree
nodes, which in turn makes them more vulnerable to failures [28]. The activity between the
uploader and the downloader of a file in the P2P file sharing network results in the similar
vulnerability to the high degree nodes. This brings obvious concerns on the security of the P2P
file sharing systems.

ELiSyR uses the degree information to achieve our goals. First, we reduce the effect of
malicious users by limiting the chances of them responding to search queries. Under this
network, the vulnerability of each node depends on its degree [28]. We design our file search
algorithm based on this study. ELiSyR favors lower-degree nodes to higher-degree nodes and
limit the number of hops each request may be forwarded (TTL). It may also increase an
average distance from a node to any other nodes. This increase delays our search, but it also
delays the search queries from reaching the Sybil nodes. As shown by simulation and
experiments in Section 4, we show comparable Sybil resilience to the state-of-the art
anti-Sybil mechanism in avoiding bad downloads.

Second, ELiSyR takes a further step towards saving bandwidth in file search by selectively
forwarding the search queries to neighbors. Instead of forwarding a search query to all its
neighbors, each node picks a random neighbor and forwards until the sum of the degrees of the
chosen neighbors exceeds the threshold. As we discussed in Section 1, forwarding on social
networks may impose unbalanced loads on high-degree nodes. In a typical P2P network, the
degree of peers forms a power-law network [19][21][30] in which most of the nodes have low
connections and few nodes have a large number of edges. This social nature of P2P networks
aggravates the load imbalance, as the degree distribution is highly skewed among peers. The
random neighbor selection favors low-degree nodes over high-degree nodes. This
non-uniform selection helps reducing the load imbalance, as shown in Section 4.

Finally, for efficient bandwidth consumption and lightweight maintenance, we only require
each node to remember the degrees of its neighbors. This information may be periodically
updated, or piggybacked as part of search queries. Whenever a node sends a search query to its
neighbor, it may include its own degree so that the neighbor has up-to-date information.

3.1. ELiSyR Algorithm Description
Algorithm 1. describes our ELiSyR file search algorithm. Each peer i maintains dij, the degree
of neighbor j in peer i’s local repository. Note that dij and dkj may be different for two peers i
and k depending on how the degree information is updated. ELiSyR function decides to which
peers a file search query should be forwarded, and this function is used for both queries
initiated by peer i or the queries received by peer i.

Lines 17-19 compute pij, the probability of peer i forwarding the query q to its neighbor j for
every neighbor. As mentioned above, ELiSyR favors the low degree nodes. The simplest way
to favor low degree nodes would be to set the forwarding probability pij to the inverse of the
degree of neighbor j, 1/dij. However, this probability distribution would favor low degree
nodes to the point that ELiSyR avoids high degree nodes altogether, due to the skewed degree
distribution in social networks. As Adamic et al. showed in [26], the high-degree nodes appear
on most shortest paths to other peers and avoiding them at all often results in network partition,
i.e. not being able to find files at all.

1316 Kim et al.: ELiSyR: Efficient, Lightweight and Sybil-Resilient File Search in P2P Networks

We introduce a discount factor, α, and now pij is set to 1/dij
α. α is a parameter that balances

the queries between low-degree nodes and high-degree nodes for load balancing and search
efficiency. When α = 1, pij = 1/dij and the algorithm works as mentioned in the previous
paragraph. This suffers from low file search success rate, but achieves better load balancing
among nodes with different degrees. On the other hand, when α = 0, then pij becomes the same
for every neighbor j of peer i. The default setting in our experimental results in Section 4 is α =
0.5. This probability computation may be cached and reused if the social network is relatively
stable and the degrees do not change often.

In lines 21-29, peer i selects a random neighbor j to forward q to based on the probability pij.
For each neighbor j the request q is forwarded to, peer i adds dij, the degree of neighbor j, to the
sum, and repeat forwarding as long as the sum is less than Tfwd, the forwarding threshold. The
reasoning behind this is that by forwarding to a high-degree node we increase the chances of
finding the requested file, but also increase the chances of load imbalance between peers and

1: function issue_query(i, q) {peer i issues a query q}
2: TTL(q) := max {max is 20 in the evaluation results}
3: ELiSyR(i, q)
4: process query responses
5: end function

6: function received_query(i, q)
7: if i has the requested file then
8: send a response message to the query issuer
9: else

10: ELiSyR(i, q)
11: end if
12: end function

13: function ELiSyR(i, q) {peer i sends (or forwards) the query q}
14: Ni: a set of peer i's neighbors
15: dij : degree of neighbor j of peer i where j ∈ Ni
16: Tfwd: forwarding threshold
17: for all j ∈ Ni do

18: α
ij

ij d
p 1

=

19: end for
20: sum := 0
21: while sum < Tfwd do
22: if TTL(q) = 0 then
23: return
24: end if
25: randomly select node j from Ni based on pij
26: TTL(q) := TTL(q) - 1
27: send q to peer j
28: sum := sum + dij
29: end while
30: end function

Algorithm 1. ELiSyR file search algorithm

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 6, December 2010 1317

of reaching a Sybil attacker by taking a short cut in the social network. So we limit peer i from
forwarding to high-degree nodes too many times. On the other hand, forwarding to a
low-degree node may suffer from low chances of finding the requested file, so we repeat
forwarding to many low-degree nodes to increase the chances. We set Tfwd = 500 in our
experiment.

4. Experimental Results
We implemented the ELiSyR algorithm based on the Query-Cycle Simulator (QCSim) [26],
which is a P2P file-sharing network simulator written by the authors of EigenTrust. We made
extensive modifications in QCSim so that the simulator might behave more like real trace. We
conducted experiments with synthetic and trace-based dataset and network.

We study the behavior of ELiSyR in simple network settings to compare with basic query
forwarding algorithms as well as EigenTrust and SybilGuard. In each cycle of the
Query-Cycle Simulator [31], a peer issues queries for a file, other peers may respond to
queries, and the file is transferred from one of the responders to the peer who sent out the query
to conclude a search process. For synthetic dataset and network, we used the network and file
distribution of Query-Cycle Simulator. QCSim uses the Barabási-Albert (BA) model [32] to
generate the power-law network, where high degree nodes tend to have high chances to
connect to the newly-joining node (preferential attachment). Query-Cycle Simulator also
distributes files among the nodes according to its popularity. It first assigns popularity to files
according to Zipf distribution, and distributes (and replicates) files according to Zipf
distribution again. As a result, more popular files are replicated in more nodes. Details of the
simulator are described in [26]. We first set the simulation parameters the same as EigenTrust
where the network consists of 62 good peers and 40 malicious peers. This setting is already
intended to test the system in a heavily-attacked network environment, but we increase the
percentage of malicious peers to simulate Sybil attacks in subsequent experiments. In our
simulation, malicious peers respond to a query even when they do not have the requested file
by the query and induce download of fake files (bad download). When unspecified, the
forwarding threshold is set to 50. Each simulation consists of 150 cycles. We ran each setting
for five times and averaged the results. In each setting, we recorded the network bandwidth
consumption and the download performance. We compared the performance of our algorithms
with EigenTrust and SybilGuard. In our simulation the global trusts in EigenTrust are
computed in every 30 query cycles, which is the same with the value used in [11].

We used the trace as well collected by Fast et al. [33] on the OpenNap [34] network, an
open-source descendant of Napster. OpenNap is a centralized P2P network in which users log
on to a central server that tracks all search requests and file downloads. The trace was collected
from a campus network sharing mp3 files during an 81-day period between February 28, 2003
and May 21, 2003 [33]. The trace includes 1) the file distribution, 2) the queries issued by
peers, and 3) the file transfer between peers. We constructed the peer network by generating a
data-sharing graph with the trace obtained above. Iamnitchi et al. defined the data-sharing
graph as a graph in which nodes are users and an edge connects two users with similar interests
in data [35]. They present the characteristics of the three different types of data-sharing graphs
that correspond to three file-sharing communities: high-energy physics collaboration, the Web
as seen from the Boeing traces, and the Kazaa peer-to-peer file-sharing system seen from a
large ISP in Israel. According to their research, the Kazaa data-sharing graph is the closest to a
power-law, and data-sharing graphs for the three systems all display small-world properties.
The data-sharing graphs we built from OpenNap trace would have such properties as well.

1318 Kim et al.: ELiSyR: Efficient, Lightweight and Sybil-Resilient File Search in P2P Networks

Our data-sharing graph consists of total 6,464 nodes and 99,680 edges. The average degree
of peers is 30. In our experiments, we regard all these peers as honest nodes and inject Sybil
nodes into the network artificially. We model the Sybil attack by creating g collective Sybil
groups and inserting random edges between good and Sybil peer, called attack edges. Sybil
nodes in each Sybil group are all connected with each other and respond to every file search
query with fake file.

In our experiment, the number of Sybil groups, g, is 5, and the number of Sybil nodes per
Sybil group is 1,000, so 5,000 Sybil nodes in total. This setting of 5,000 Sybil nodes and 6,464
honest nodes is to test the system in a heavily attacked network environment. In ELiSyR, the
only data that Sybil peers can manipulate is the degree of Sybil peers. A Sybil node j lies to its
neighbor node i that its degree is 1, which maximizes pij. In EigenTrust, the Sybil peers boost
the reputation of the fellow Sybil peers in the same Sybil group while undermining the
reputation of honest nodes. In SybilLimit’s behavior, the random routes passed Sybil nodes. In
every experiment, 200,000 queries were issued. Every query is repeated up to 3 times with
pre-determined delay between retries. This delay between retires mimics the user’s behavior
of waiting until the search completes and retrying. Since our simulator does not have a clock,
we use the number of cycles as the delay measure, and waits for 3,000 queries to pass before
each retry. We have experimented with two other algorithms that operate on social networks
for comparison. The first algorithm “proportional” forwards requests to neighbor nodes with a
probability proportional to their degrees. This algorithm finds the target file fast, but has more
load imbalance and less Sybil-resilience than our other algorithms. The second algorithm
“random” has a peer forward a search query to its neighbors with the equal chances, in other
words according to probability from the uniform random distribution. The proportional
algorithm shows how utilizing high-degree peers give faster answers but less load balancing
and Sybil resilience. The random algorithm achieves better load balancing than the
proportional but also suffers from higher chances of inauthentic downloads.

4.1. Safe File Search
We measure our Sybil resilience in the ratio of bad downloads per requested file and also in the
average query repetition until successful download in the presence of a large number of
malicious peers. Fig. 1 and Fig. 2 show the results with the synthetic dataset and network. Fig.
1 depicts the fraction of good downloads with varying malicious peer ratio. As expected, since
EigenTrust and SybilGuard broadcast the query into the network, peers can download the
good files for most of the queries. On the other hand, the ELiSyR algorithm forwards the query
message for a limited number of times. Yet the graph shows that more than 90% of the queries
are successfully responded with good files. Even if malicious nodes occupy 70% of the total
nodes, the fraction of successful query is sustained over 90%. This result is more interesting
compared to the bandwidth consumption in the next subsection, where the ELiSyR algorithm
consumes only 10 to 20% of EigenTrust or SybilGuard.

In Fig. 2, we show the average number of query repetition until successful download. In
Query-Cycle Simulator, after receiving the query responses from those who have the specified
file or those who pretend to have the file, a query issuer first sends download request one by
one to those who responded to the query until it downloads a good file. Therefore, the less the
peer downloads inauthentic files, the better the effectiveness of the algorithm becomes. The
computation of trust in EigenTrust effectively reduces the download of inauthentic files. With
the ELiSyR algorithm, each query on average is repeated two times. Note that this is the case
when the malicious peers are more than 40% of the total number of peers in the network, and

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 6, December 2010 1319

even with SybilGuard every query is repeated 3 to 4 times, which is 1.5 to 2 times more than
the ELiSyR algorithm.

Fig. 1. Ratio of good downloads for each requested file

Fig. 2. Average query repetition until good download

The following shows the result with the trace-based dataset and network. We evaluate our

Sybil resilience in two metrics, the number of bad downloads for each successful download
and the ratio of successful query to all queries, and compare it to SybilLimit. In Table 1, we
show the average number of bad downloads for each successful download and the ratio of
successful queries. When there are multiple responders for the query, each algorithm chooses
the uploader differently. In SybilLimit, the responder with the highest number of intersections

1320 Kim et al.: ELiSyR: Efficient, Lightweight and Sybil-Resilient File Search in P2P Networks

of the random routes is chosen. In ELiSyR, the responder with the shortest distance from the
query issuer is chosen. As shown in Table 1, we achieve very low overhead even in the
presence of 5,000 Sybil nodes attacking honest users. SybilLimit accepts very low percentage
of Sybil nodes, but it suffered more inauthentic downloads than ELiSyR as once it reaches the
Sybil region they showed very high intersection numbers. We expect this value to go down if
the selection process changes to favor closer uploaders as ELiSyR does. As we mentioned
earlier, each peer gives its query three chances of forwarding. The duplicate query is issued
when a query did not succeed for the first two times. If the query finally failed to find the
requested file, it is dropped and marked as failed query. ELiSyR succeeds in finding safe file to
download 71.5% of the times even in the presence of 233 attack edges from 5,000 Sybil nodes
to 6,464 honest nodes. SybilLimit suffers again due to high intersection numbers of Sybil
nodes, but we expect that this value would go up if the selection method changes as well.

Table 1. The average number of bad downloads per successful download

Attack
edges

Avg. number of inauthentic
downloads per successful download Percentage of successful queries

ELiSyR SybilLimit ELiSyR SybilLimit
13 .1657 .9849 74.2% 28.9%
79 .1767 1.8887 74.0% 15.6%

233 .2145 1.8542 71.5% 16.5%

4.2. Efficiency and Light-Weight Maintenance
We now compare the network usage of algorithms. First, we collected the network traffic used
for query-forwarding and other reputation-related messages. In addition to the query
forwarding, EigenTrust uses RequestTrust and Trust messages in order to request and transfer
the trust values computed so far. A peer i sends a RequestTrust message to those who
responded the query issued by peer i. Then peer i can select a node based on the trust value
obtained. Trust message which holds i’s trust on j is transferred from peer i to peer j during the
trust computation. In SybilGuard, a peer i requests peer j’s random routes from peer j by
sending RequestTrust message. Then peer i queries the intersecting node of random routes of
peer i and peer j if peer j’s random route actually passes the intersecting node by sending
RequestVerify message. With the same simulation setting, we obtained the following results.

Fig. 3 plots the network traffic used in five algorithms with synthetic workload. We
extracted the network usage every thirty cycles and displayed the result with varying
simulation time (cycle). ELiSyR, Proportional, and Random only use the query-forwarding
messages. The amount of network traffic EigenTrust consumes to maintain the trust values is
larger than the amount of network traffic of ELiSyR’s total messages. Although Trust
messages are interchanged not so frequently (in this simulation, every thirty cycles), it is not
ignorable that amount of ELiSyR’s total network usage is smaller than the network traffic
necessary to compute the global trust. SybilGuard consumes larger amount of network traffic
due to its verification protocol which includes the transfer of random routes.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 6, December 2010 1321

We compare the bandwidth consumption of ELiSyR and SybilLimit with trace-based
dataset and network in Table 2. We collected the network traffic used to forward query
messages and to transmit protocol-specific information. SybilLimit consumes larger amount
of network traffic due to its verification protocol which includes the transfer of random routes.
The query forwarding bandwidth of EigenTrust and SybilLimit may be reduced by using more
efficient forwarding method than flooding. However, the bandwidth spent on exchanging trust
information is an overhead that ELiSyR does not have. This result is consistent with the
simulation based on the synthetic queries.

We show the load balancing comparison in Fig. 4. With each algorithm, we collected the
network bandwidth for each peer and computed the share of its load over all the participants.
Peers with spikes in other algorithms are high-degree nodes, while ELiSyR shows not as high
spikes. The load distribution of EigenTrust and SybilGuard is quite unfair to highly-connected
nodes. First of all, it is due to the flooding search protocol. Under flooding, highly-connected
node cannot avoid a great number of forwarding messages coming from its incoming edges.
Furthermore, the algorithm-specific protocols of EigenTrust and SybilGuard aggravate the

Fig. 3. Bandwidth consumption for each cycle

Table 2. Bandwidth consumption per query in MB
Class ELiSyR SybilLimit EigenTrust

Query forward .13 3.57 3.57
Random route transfer N/A .159 N/A

Verification N/A 0.000322 N/A
Trust computation N/A N/A 0.0237

1322 Kim et al.: ELiSyR: Efficient, Lightweight and Sybil-Resilient File Search in P2P Networks

load imbalance. For SybilGuard, since random routes are highly likely to intersect on
high-degree nodes, the verification requests tend to be driven to them. But ELiSyR fairly
distributed the load among peers. One thing to note is that distributing the load evenly is not
recommended since it can be a serious burden to several low-degree nodes such as newcomers.
ELiSyR is also scattering the load fairly well in that not so much load is imposed on
low-degree nodes.

We now measure the setup cost of each algorithm in terms of bandwidth consumption. The
setup cost of each algorithm is determined as follows. For ELiSyR, each peer should advertise
its degree to its neighbors. For SybilLimit, every peer should generate its random routes
enough to prove its authenticity and test others’. EigenTrust does not have any setup cost. In
our experiment, ELiSyR cost about 91MB of bandwidth and SybilLimit about 2048MB. This
setup cost is also relevant to the maintenance cost. When the social network changes, for
example there are new nodes or edges added to the network or nodes and edges removed from
the network, then the ELiSyR requires to update the degree information and the SybilLimit
requires to update the random route information. ELiSyR requires more maintenance cost than
EigenTrust, but less than SybilLimit.

Even though our main goal is to reduce bandwidth consumption, it is notable to show the
storage cost of three algorithms in comparison. The comparison of storage cost for each peer i
is shown in Table 3. The ELiSyR algorithm incurs storage cost only in maintaining the degree
of neighbor nodes. It requires ()idSIZEnodeid × to remember degrees of its neighbors. In
EigenTrust, each peer i keeps the history of file transfer for upload and download: the set of

Fig. 4. Load balancing in bandwidth (We sampled every 5th node in the increasing order of degree.

The degree of each node is displayed in the inner figure.)

Table 3. Comparison of storage cost for each peer i. SIZE_xxx denotes the size of xxx. The storage
cost to store the neighbor of peer i is not considered in this table. d(i), dl(i), and ul(i) denote the

degree of peer i, the set of peers from which peer i has downloaded files, and the set of peers which
have downloaded file from peer i, respectively.

Algorithm Storage cost for each peer i

ELiSyR ()idSIZEnodeid ×

EigenTrust () () (){ }iulidlSIZEidlSIZE nodeidtrust ++×

Sybil* () ()idwSIZEidSIZE keynodeid ×××+× 2

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 6, December 2010 1323

peers which have downloaded file from peer i (ul(i)) and the set of peers from which peer i has
downloaded files (dl(i)). In addition, peer i stores evaluation from download experience for
each peer in the download set. This adds ()idlSIZEtrust × to store the local trust values.
SybilGuard and SybilLimit require each peer to remember random routes it took in the initial
setup, and also the random routes that have passed this peer. This takes ()idwSIZEkey ×××2 .
SybilGuard and SybilLimit also require a symmetric key between each peer and its neighbor,
which takes ()idSIZEnodeid ×

storage.

From this table, it is obvious that SybilGuard and SybilLimit require additional
()idwSIZEkey ×××2 bytes compared to ELiSyR. To compare EigenTrust and ELiSyR, we

formulate the ratio of the storage cost of EigenTrust and that of ELiSyR as follows.

() () (){ }
()

() ()()
()

())(
)(
)(let ,

)(
)(23)(

)(
)(2)(3

 if,
23

2
cost

cost

ELiSyR

EigenTrust

ia
idl
iul

id
iaidl

id
iulidl

SIZESIZE
idSIZE

iulidlSIZE
idSIZE

iulidlSIZEidlSIZE
R

keynodeid
nodeid

nodeid

nodeid

nodeidkey

=
+

=
+

=

≅
×
+⋅

=

×

+×+×
==

.
ELiSyR consumes less storage than EigenTrust if the following inequality holds.

())(231

)(
)(23)(ia

dl(i)
d(i)

id
iaidlR +≤⇔≥

+
=

According to the above inequality, the per-peer storage cost of ELiSyR becomes smaller
than that of EigenTrust when the number of peers that peer i have downloaded files from is

)(23 ia+ times greater than the degree of peer i. For example, if peer i has 9 neighbors and i
has downloaded files from more than 3 peers, then the storage cost of peer i in ELiSyR is
smaller than that in EigenTrust assuming that 0)(=ia . When 0)(>ia , it is sufficient for peer
i to download files from less than 3 peers in order to satisfy the above inequality. This
condition is not hard to satisfy. In the system’s viewpoint, since the vast majority of nodes are
those with small degree in a power-law network, the total storage cost of ELiSyR is similar to
or less than that of EigenTrust.

5. Future Work and Conclusion
P2P networks consume a major part of the Internet bandwidth, and most consumption comes
from file sharing applications. Therefore it is important that bad downloads are avoided even
before detection. In this paper, we propose ELiSyR, an efficient, light-weight and
Sybil-Resilient file search protocol. ELiSyR uses the degree information to achieve our goals.
Even though ELiSyR requires a small amount of information - the degree information of
neighboring peers, ELiSyR shows relatively low bad download rates even in the severely
attacked environment and consumes low bandwidth compared to EigenTrust, SybilGuard and

1324 Kim et al.: ELiSyR: Efficient, Lightweight and Sybil-Resilient File Search in P2P Networks

SybilLimit. As future work, we will incorporate reputation system such as EigenTrust into
forwarding probability computation for better bad download rate.

References
[1] H. Schulze and K. Mochalski. “iPoq Internet Study 2007,” http://www.ipoque.com/userfiles/file/

internet_study_2007.pdf, Dec. 2007.
[2] “BitTorrent Acquires µTorrent,” http://www.bittorrent.com/pressreleases/2006/12/06/bittorrent

-acquires-%C2%B5torrent, Dec. 2006.
[3] T. Claburn. “Fake mp3 Trojan detected on 27% of PCs,” http://www.informationweek.com/story/

showArticle.jhtml?articleID=207600502, May 2008.
[4] L. Page, S. Brin, R. Motwani and T. Winograd, “The PageRank citation ranking: Bring order to the

Web,” in Proc. of the 7th International World Wide Web Conf., Apr. 1998. Article (CrossRef Link)
[5] A. Cheng and E. Friedman, “Sybilproof reputation mechanisms,” in SIGCOMM 05 Workshop,

Aug. 2005. Article (CrossRef Link)
[6] M. Oiaga. “eBay Bot Fraud - positive feedback is used as an incentive to attract victims,”

http://news.softpedia.com/news/eBay-Bot-Fraud-31711.shtml, Aug. 2006.
[7] H. Yu, M. Kaminsky, B. P. Gibbons and A. Flaxman, “SybilGuard: Defending against sybil

attacks via social networks,” in ACM SIGCOMM, Sept. 2006. Article (CrossRef Link)
[8] H. Yu, P. Gibbons, M. Kaminsky and F. Xiao, “SybilLimit: A near-optimal social network defense

against sybil attacks,” in Proc. of the 2008 IEEE Symposium on Security and Privacy, May 2008.
Article (CrossRef Link)

[9] G. Danezis, C. Lesniewski-Laas, F. M. Kaashoek and R. Anderson, “Sybil-resistant DHT routing,”
in ESORICS, Sept. 2005. Article (CrossRef Link)

[10] H. Rowaihy, W. Enck, P. McDaniel and L. T. Porta, “Limiting sybil attacks in structured p2p
networks,” in INFOCOM Mini-Symposium, May 2007. Article (CrossRef Link)

[11] D. S. Kamvar, T. M. Scholosser and H. Garcia-Molina, “The EigenTrust algorithm for reputation
management in P2P networks,” in Proc. of the 12th International Conference on World Wide Web,
May 2003. Article (CrossRef Link)

[12] M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in The Third Symposium on
OPerating Systems Design and Implementations (OSDI), Feb. 1999. Article (CrossRef Link)

[13] N. B. Levine, C. Shields and B. N. Margolin, “A survey of solutions to the sybil attack,” Univ. of
Massachusetts Amherst, Tech report 2006-052, Oct. 2006. Article (CrossRef Link)

[14] B. N. Margolin and N. B. Levine, “Informant: detecting sybils using incentives,” in Proc. of
Financial Cryptography (FC), Feb. 2007. Article (CrossRef Link)

[15] T. Kohno, A. Broido and K. Claffy, “Remote physical device fingerprinting,” in Proc. of IEEE
Symposium on Security and Privacy, May 2005. Article (CrossRef Link)

[16] C. Hota, J. Lindqvist, K. Karvonen, A. Yla-Jaaski and J. C.K. Mohan, “Safeguarding Against Sybil
Attacks via Social Networks and Multipath Routing,” in Proc. of International Conf. on
Networking, Architecture, and Storage, Aug. 2007. Article (CrossRef Link)

[17] Qinyuan Feng and Yafei Dai, “LIP: A LIfetime and Popularity Based Ranking Approach to Filter
out Fake Files in P2P File Sharing Systems,” in Proc. of International Workshop on Peer-To-Peer
Systems, Feb. 2007. Article (CrossRef Link)

[18] S. Saroiu, P. K. Gummadi and S. D. Gribble, “A measurement study of peer-to-peer file sharing
systems,” in Proc. of Multimedia Computing and Networking (MMCN), Jan. 2002. Article
(CrossRef Link)

[19] N. Sarshar, O. P. Boykin and P. V. Roychowdhury, “Percolation search in power law networks:
Making unstructured peer-to-peer networks scalable,” in Proc. of the 4th International Conf. on
Peer-to-Peer Computing (P2P), Aug. 2004. Article (CrossRef Link)

[20] C. Gkantsidis, M. Mihail and A. Saberi, “Random walks in peer-to-peer networks,” in Proc. of
Thenty-third Annual Joint Conf. of the INFOCOM, Mar. 2004. Article (CrossRef Link)

[21] Q. Lv, P. Cao, E. Cohen, K. Li and S. Shenker, “Search and replication in unstructured

http://en.scientificcommons.org/42893894�
http://portal.acm.org/citation.cfm?id=1080202�
http://portal.acm.org/citation.cfm?id=1159913.1159945�
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4531141�
http://www.springerlink.com/index/a6ykwpqrg1k9udk7.pdf�
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4215910�
http://portal.acm.org/citation.cfm?id=775152.775242&type=series%EF%BF%BD%C3%9C�
http://www.usenix.org/events/osdi99/full_papers/castro/castro_html/node4.html�
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.6395&rep=rep1&type=pdf�
http://www.springerlink.com/index/gjv2h8j17xh845u3.pdf�
http://www.computer.org/portal/web/csdl/doi/10.1109/TDSC.2005.26�
http://dx.doi.org/doi:10.1109/NAS.2007.47�
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.791&rep=rep1&type=pdf�
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.74.7773&rep=rep1&type=pdf�
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.74.7773&rep=rep1&type=pdf�
http://www.computer.org/portal/web/csdl/doi/10.1109/PTP.2004.1334925�
http://dx.doi.org/doi:10.1016/j.peva.2005.01.002�

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 6, December 2010 1325

peer-to-peer networks,” in Proc. of International Conf. on Supercomputing, June 2002.
[22] Y. Chawathe, S. Ratnasamy, N. L. B. Lanham and S. Shenker, “Making gnutella-like p2p systems

scalable,” in Proc. of the 2003 Conf. on Applications, Technologies, Architectures, and Protocols
for Computer Communications, Aug. 2003. Article (CrossRef Link)

[23] C. Gkantsidis, M. Mihail and A. Saberi, “Random walks in peer-to-peer networks: Algorithms and
evaluation,” Performance Evaluation, vol. 63, no. 3, pp. 241-263, Mar. 2006. Article (CrossRef
Link)

[24] D. Tsoumakos and N. Roussopoulos, “Adaptive probabilistic search for peer-to-peer networks,” in
Proc. of the 3rd International Conf. on Peer-to-Peer Computing (P2P), Sept. 2003. Article
(CrossRef Link)

[25] S. Jin and H. Jiang, “Novel approaches to efficient flooding search in peer-to-peer networks,” The
International Journal of Computer and Telecommunications Networking, vol. 51, no. 10, pp.
2818-2832, July 2007. Article (CrossRef Link)

[26] L. Adamic, R. Lukose and B. Huberman, “Search in power-law networks,” Physical Review, vol.
64, no. 4, p. 046135, Sept. 2001. Article (CrossRef Link)

[27] Michalis Faloutsos, Petros Faloutsos and Christos Faloutsos, “On power-law relationships of the
Internet topology,” in Proc. of ACM SIGCOMM, Aug. 1999. Article (CrossRef Link)

[28] Lazaros K Gallos, Reuven Cohen, Panos Argyrakis, Armin Bunde and Shlomo Havlin, “Stability
and Topology of Scale-Free Networks under Attack and Defense Strategies,” Physical Review
Letters, vol. 94, no. 18, p. 188701, May 2005. Article (CrossRef Link)

[29] M. R. Christley, L. G. Pinchbeck, G. R. Bowers, D. Clancy, P. N. French, R. Bennett and J. Turner,
“Infection in Social Networks: Using Network Analysis to Identify High-Risk Individuals,”
American Journal of Epidemiology, vol. 162, no. 10, pp. 1024-1031, Sept. 2005. Article (CrossRef
Link)

[30] M. Ripeanu, “Peer-to-peer architecture case study: Gnutella network,” in Proc. of the 1st
International Conf. on Peer-to-Peer Computing (P2P), Aug. 2001. Article (CrossRef Link)

[31] T. M. Schlosser, E. T. Condie and D. S. KIamvar, “Simulating a file-sharing p2p network,” in Porc.
of Workshop in Semantics in Peer-to-Peer and Grid computing, Dec. 2002. Article (CrossRef
Link)

[32] A. Barabasi and R. Albert, “Emergence of scaling in random networks,” Science, vol. 286, no.
5439, pp. 509-512, Oct.1999. Article (CrossRef Link)

[33] A. Fast, Jensen D. and N. B. Levine, “Creating social networks to improve peer-to-peer
networking,” in Proc. of the eleventh International Conf. on Knowledge Discovery in Data Mining
(SIGKDD), Aug. 2005. Article (CrossRef Link)

[34] “OpenNap: Open source napster server,” http://opennap.sourceforge.net, September 2001.
[35] A. Iamnitchi, M. Ripeanu and I. Foster, “Small-world file-sharing communities,” in Proc. of The

23rd Conf. of the IEEE Communication Society (INFOCOM), Mar. 2004. Article (CrossRef Link)

Hyeong S. Kim received his B.S. degree in Computer Science and Engineering from Seoul National
University, Seoul, Korea, in 2003. He received his M.S. degree in 2005 and is currently a Ph.D.
Candidate in the School of Computer Science and Engineering at Seoul National University. His research
interests are in the areas of Cloud and Grid computing, distributed storage, social networks, and energy
efficiency.

http://portal.acm.org/citation.cfm?id=863955.864000�
http://linkinghub.elsevier.com/retrieve/pii/S0166531605000179�
http://linkinghub.elsevier.com/retrieve/pii/S0166531605000179�
http://www.computer.org/portal/web/csdl/doi/10.1109/PTP.2003.1231509�
http://www.computer.org/portal/web/csdl/doi/10.1109/PTP.2003.1231509�
http://linkinghub.elsevier.com/retrieve/pii/S1389128606003689�
http://link.aps.org/doi/10.1103/PhysRevE.64.046135�
http://portal.acm.org/citation.cfm?id=316229&dl=�
http://link.aps.org/doi/10.1103/PhysRevLett.94.188701�
http://dx.doi.org/doi:10.1093/aje/kwi308�
http://dx.doi.org/doi:10.1093/aje/kwi308�
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.76.1505&rep=rep1&type=pdf�
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.74.2818&rep=rep1&type=pdf�
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.74.2818&rep=rep1&type=pdf�
http://www.sciencemag.org/cgi/content/abstract/sci;286/5439/509�
http://portal.acm.org/citation.cfm?id=1081870.1081938�
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1356982�

1326 Kim et al.: ELiSyR: Efficient, Lightweight and Sybil-Resilient File Search in P2P Networks

EJ Jung is an assistant professor in Computer Science at USF. She has received a Master's degree
and a Ph.D. in Computer Science at the University of Texas at Austin. Her research interests are
security and fault-tolerance in distributed, peer-to-peer, and grid systems, privacy and anonymity in
databases, security policy management, and usable security. Her current projects include
anti-malware toolbar, Sybil attacks in social networks, privacy and anonymity support in medical
databases, and XACML policy management.

Heon Y. Yeom received the B.S. degree in computer science from Seoul National University,
Seoul, Korea, in 1984 and the M.S. and Ph.D. degrees in computer science from Texas A&M
University, College Station, in 1986 and 1992, respectively. From 1986 to 1990, he was with Texas
Transportation Institute as a Systems Analyst and from 1992 to 1993, he was with Samsung Data
Systems as a Research Scientist. He joined the Department of Computer Science, Seoul National
University, in 1993, where he currently is a Professor and teaches and conducts research on
distributed systems.

