DOI QR코드

DOI QR Code

농경지에서 발생되는 토양유실의 정확한 산정을 위한 SWAT DWDM 개발

Development of the SWAT DWDM for Accurate Estimation of Soil Erosion from an Agricultural field

  • Jang, Won-Seok (Dept. of Regional Infrastructures Engineering in Kangwon National University) ;
  • Park, Youn-Shik (Dept. of Regional Infrastructures Engineering in Kangwon National University) ;
  • Kim, Jong-Gun (Dept. of Regional Infrastructures Engineering in Kangwon National University) ;
  • Kim, Nam-Won (Korea Institute of Construction Technology) ;
  • Choi, Joong-Dae (Dept. of Regional Infrastructures Engineering in Kangwon National University) ;
  • Ok, Yong-Sik (Dept. of Biological Environment in Kangwon National University) ;
  • Yang, Jae-E (Dept. of Biological Environment in Kangwon National University) ;
  • Lim, Kyoung-Jae (Dept. of Regional Infrastructures Engineering in Kangwon National University)
  • 발행 : 2010.01.31

초록

준분포형 모형인 SWAT 모형은 소유역내 수문학적 반응단위 별로 유출, 유사 등의 발생을 평가하는데 이때 Hydrological Response Unit (HRU)의 지형정보가 활용된다. 현재 SWAT 모형의 인터페이스 구조는, 각 소유역의 평균 지형인자 값이 각 소유역내의 모든 HRU의 지형정보로 사용된다. 그러므로 각 소유역내의 HRU에 있는 지형인자를 정확하게 추출하기 위해서는 수계를 자세하게 나누어야 하며, 이를 위해서 더욱 자세한 소유역 수계 인터페이스가 필요하다. 현재 SWAT 모형 인터페이스에서는 수계를 나눌 때 임계값의 최소값은 최대 flow accumulation 값의 0.1 %가 사용된다. 따라서 HRU의 지형인자를 추출하기 위해 아주 자세한 정도로 소유역의 수계를 나눈다는 것은 불가능하다. 본 연구에서는 사용자가 원하는 임계값과 농경지 경계를 근거하여 소유역 경계를 추가로 수계를 나눌 수 있는 Dual Watershed Delineation Module (DWDM) 을 개발하였다. 기존 SWAT의 수계추출 모듈로 유량을 모의한 결과 $27,219\;m^3$/month 가 산정되었고, DWDM 을 적용한 결과 $26,172\;m^3$/month 로 약 3.8 %의 미미한 차이가 생겼다. 하지만 유사의 경우 DWDM을 적용하기 전에는 0.779 ton/month, 적용 후에는 2.688 ton/month 로 약 245 %의 차이를 보였다. 즉 농경지를 추가적으로 수계를 나눌 때 유사의 가장 민감한 요소인 경사장을 실제지형에 맞게 고려함에 따라 좀 더 정확한 유사 산정을 할 수 있었다. 농경지에서의 정확한 수문 및 유사 평가 시 본 연구에서 개발한 모듈이 적용 되어야 한다고 사료된다.

키워드

참고문헌

  1. Arnold, J. G., N. Fohrer, 2005. SWAT2000: current capabilities and research opportunities in applied watershed modeling. Hydrological Processes 19(3): 563-572. https://doi.org/10.1002/hyp.5611
  2. Arnold, J. G., R. Srinivasan, R. S. Muttiah, and J. R. Williams, 1998. Large area hydrologic modeling and assessment: part I: model development. Journal of American Water Resources Association 34(1): 73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
  3. Bicknell, B. R., J. C. Imhoff, J. L. Kittle, and A. S. Donigian, 2001. Hydrological Simulation Program - .Fortran, Version 12, User's Manual. AQUATERRA Consultants, Mountain View, California, USA.
  4. Binger, R. L., and F. D. Theurer, 2003. AnnAGNPS technical processes: documentation version 3. Available at http://www.ars.usda.gov/Research/. Accessed Mar.10. 2009.
  5. Cai, Q. G., H. Wang, D. Curtin, and Y. Zhu, 2005. Evaluation of the EUROSEM model with single event data on steeplands in the Three Gorges Reservoir Areas, China. CATENA 59(1): 19-33. https://doi.org/10.1016/j.catena.2004.05.008
  6. Gobin, A., and G. Govers, 2003. Pan - .European erosion risk assessment. 3rd Annual Report -. 5th Framework Programme. Ispra, Italy.
  7. Hartcher, M. G, and D. A Post, 2005. Reducing uncertainty in sediment improved representation of land cover: Application to two sub-catchments of the Mae Chaem, Thailand. In: Zerger A, Argent R. (eds). International Congress on Modelling and Simulation. Modeling Society of Australia and New Zealand 1147-1153.
  8. Heo, S., N. Kim, Y. Park, J. Kim, S. Kim, J. Ahn, K. Kim, and K. J. Lim, 2008. Evaluation of effects on SWAT simulated hydrology and sediment behaviors of SWAT watershed delineation using SWAT ArcView GIS extension patch. Journal of Korean Society on Water quality 24(2): 147-155 (in Korean).
  9. Hwang, J. Y., K. Yeon, I. Kim, K. Kim, J. Choi, J. Jeon, and K. J. Lim, 2009. Analysis of effect on runoff and water quality of LID using infiltration facilities. Journal of the Korean Society of Agricultural Engineers 51(6): 105-114 (in Korean). https://doi.org/10.5389/KSAE.2009.51.6.105
  10. Jang, W., D. Yoo, I. Chung, N. Kim, M. Jun, Y. Park, J. Kim, and K. J. Lim, 2009. Development of SWAT SD-HRU pre-processor module for accurate estimation of slope length of each HRU considering spatial topographic characteristics in SWAT. Journal of Korean Society on Water quality 25(3): 351-362 (in Korean).
  11. Jha, M., J. G. Arnold, P. W. Gassman, F. Giorgi, and R. R. Gu, 2006. Climate change sensitivity assessment on Upper Mississippi River Basin streamflows using SWAT. Journal of the American Water Resources Association 42(4): 997-1016. https://doi.org/10.1111/j.1752-1688.2006.tb04510.x
  12. Jha, M., P. W. Gassman, S. Secchi, G. Roy, and J. G. Arnold, 2002. Impact of watershed subdivision level on flows, sediment loads, and nutrient lossless predicted by SWAT. Working Paper 02-WP 315:22-23.
  13. Jung, Y., N. Kim, and H. Kim, 2007. NOM characteristics by the turbidity in-flow in lake Soyang. Proceedings of the 2007 KSWW Annual Conference 455-461.
  14. Kim, J., Y. Park, D. Yoo, N. Kim, B. A. Engel, S. Kim, K. Kim, and K. J. Lim, 2009. Development of a SWAT patch for better estimation of sediment yield in steep sloping watersheds. Journal of the American Water Resources Association 45(4): 963-972. https://doi.org/10.1111/j.1752-1688.2009.00339.x
  15. Kim, J., Y. Park, N. Kim, S. Heo, K. Kim, J. Choi, and K. J. Lim, 2007. Development of field slope length computation module for accurate soil erosion and sediment modeling using the SWAT. Proceedings of the 2007 KSWW Annual Conference 91-97 (in Korean).
  16. Kim, J., Y. Park, N. Kim, I. Chung, W. Jang, J. Park, J. Moon, and K. J. Lim, 2008. Development and evaluation of SWAT Topographic Feature Extraction Error(STOPFEE) fix module from low resolution DEM. Journal of Korean Society on Water Quality 24(4): 488-498 (in Korean).
  17. Luo, Y., X. Zhang, X. Liu, D. Ficklin, and M. Zhang, 2008. Dynamic modeling of organophosphate pesticide load in surface water in the northern San Joaquin Valley watershed of California. Environmental Polluton 156(3): 1171-1181. https://doi.org/10.1016/j.envpol.2008.04.005
  18. Neitsch, S. L., J. G. Arnold, J. R. Kiniry, R. Srinivasan, and J. R. Williams, 2002. Soil and Water Assessment Tool: User Manual, Version 2000. Grassland, Soil and Water Research Laboratory,Temple, TX.
  19. Neitsch, S. L., J. G. Arnold, J. R. Kiniry, R. Srinivasan, and J. R. Williams, 2004. Soil and Water Assessment Tool: Input / Output file documentation, Version 2005. Grassland, Soil and Water Research Laboratory, Temple, TX.
  20. Pandey, A., V. M. Chowdary, B. C. Mal, and M. Billib, 2008. Runoff and sediment yield modeling from a small agricultural watershed in India using the WEPP model. Journal of Hydrology 348(3-4):305-319. https://doi.org/10.1016/j.jhydrol.2007.10.010
  21. Park, Y., J. Kim, J. Park, J. Jeon, J. Choi, T. Kim, J. Ahn, K. Kim, and K. J. Lim, 2007. Evaluation of SWAT applicability to simulation of sediment behaviors at the Imha-dam watershed. Journal of Korean Society on Water Quality 23(4): 467-473 (in Korean).
  22. Park, Y., J. Kim, S. Heo, N. Kim, J. Ahn, J. Park, K. Kim, and K. J. Lim, 2008. Comparison of soil loss estimation using SWAT and SATEEC. Journal of the Korean Society of Agricultural Engineers 50(1): 3-12 (in Korean). https://doi.org/10.5389/KSAE.2008.50.1.003
  23. Srinivasan, R., T. S. Ramanarayanan, J. G. Arnold, and S. T. Bednarz, 1998. Large area hydrologic modeling and assessment: part II. Model Application. J. American Water Resour. Assoc. 34(1): 73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
  24. Williams, J. R., 1995. Chapter 25: The EPIC model. 909-1000. In V. P. Singh(ed.) Computer models of watershed hydrology. Water Resources Publications.
  25. Wischmeier, W. H., and D. D. Smith, 1978. Predicting rainfall erosion losses a guide to conservation planning. The USDA Agricultural Handbook No. 537.
  26. Yoo, D., J. Ahn, J. Yoon, S. Heo, Y. Park, J. Kim, K. J. Lim, and K. Kim, 2008. Analysis of soil erosion and sediment yields at the Doam-dam watershed considering soil properties from the soil reconditioned agricultural fields using SATEEC system. Journal of Korean Society on Water Quality 23(4): 518-526 (in Korean).

피인용 문헌

  1. Simulation of the Best Management Practice Impacts on Nonpoint Source Pollutant Reduction in Agricultural Area using STEPL WEB Model vol.56, pp.5, 2014, https://doi.org/10.5389/KSAE.2014.56.5.021
  2. Evaluation of SWAT Flow and Sediment Estimation and Effects of Soil Erosion Best Management Practices vol.54, pp.1, 2012, https://doi.org/10.5389/KSAE.2012.54.1.099