DOI QR코드

DOI QR Code

Marginal fidelity of zirconia core using MAD/MAM system

MAD/MAM을 이용한 치과용 지르코니아 코어의 변연 적합도

  • Kang, Dong-Rim (Department of Dentistry, Graduate School, Yonsei University) ;
  • Shim, June-Sung (Department of Dentistry, Graduate School, Yonsei University) ;
  • Moon, Hong-Suk (Department of Dentistry, Graduate School, Yonsei University) ;
  • Lee, Keun-Woo (Department of Dentistry, Graduate School, Yonsei University)
  • 강동림 (연세대학교 치과대학 치과보철학교실) ;
  • 심준성 (연세대학교 치과대학 치과보철학교실) ;
  • 문홍석 (연세대학교 치과대학 치과보철학교실) ;
  • 이근우 (연세대학교 치과대학 치과보철학교실)
  • Published : 2010.01.29

Abstract

Purpose: The purpose of this study was to evaluate the fit of zirconia core using MAD/MAM system comparing to that of conventional metal-ceramic and CAD/CAM system. Materials and methods: Duplicating the prepared resin tooth, 50 improved stone dies were fabricated. These dies are classified as a group of 5 to create the core. The groups were composed of metal-ceramic, $Cercon^{(R)}$, $Ceramill^{(R)}$, $Rainbow^{TM}$, and $Zirkonzhan^{(R)}$. Each core was cemented to stone die, and then, absolute marginal discrepancy was measured with microscope at a magnification of ${\times}50$. Statistical analysis was done with one-way ANOVA test and Tukey's HSD test. Results: The mean absolute marginal discrepancy for metal-ceramic was $51.97{\pm}23.38{\mu}m$, for $Cercon^{(R)}$ was $62.16{\pm}25.88{\mu}m$, for $Ceramill^{(R)}$ was $67.64{\pm}40.38{\mu}m$, for $Rainbow^{TM}$ was $125.07{\pm}42.19{\mu}m$, and for $Zirkonzhan^{(R)}$ was $105{\pm}44.61{\mu}m$. Conclusion: 1. Fit of margin was identified as in the order of metal-ceramic, $Cercon^{(R)}$, $Ceramill^{(R)}$, $Zirkonzhan^{(R)}$, and $Rainbow^{TM}$. 2. Absolute marginal discrepancy of the zirconia core that designed by MAD/MAM system had significant differences in order of $Ceramill^{(R)}$, $Zirkonzhan^{(R)}$, and $Rainbow^{TM}$. 3. The mean absolute marginal discrepancy between $Cercon^{(R)}$ and $Ceramill^{(R)}$ did not show significant differences.

연구 목적: 본 연구에서는MAD/MAM 시스템으로 제작된 지르코니아 코어를 통상적인 방법으로 제작된 금속-도재관 코어와 CAD/CAM 시스템으로 제작된 코어와의 변연부 적합도를 비교 분석해 보고자 한다. 연구 재료 및 방법: 레진치를 전부 도재관 제작을 위한 형태로 삭제하고, 이를 복제하여 석고 모형을 제작하였다. 석고 모형에 대해 금속-도재관, CAD/CAM ($Cercon^{(R)}$), 3종의 MAD/MAM 시스템 ($Ceramill^{(R)}$, $Rainbow^{(TM)}$, $Zirkonzhan^{(R)}$)으로 각각 10개의 코어를 제작하였다. 제작된 코어를 다이에 합착하여 광학 현미경 상에서 50배율로 변연 간격을 관찰, 계측하였다. 측정된 결과는 one-way ANOVA test로 분석하고, Tukey's HSD test로 사후검정 하였다. 결과: 각 시스템에서 변연 간격의 평균과 표준 편차는 금속-도재관 코어 $51.97{\pm}23.38{\mu}m$, $Cercon^{(R)}$ $62.16{\pm}25.88{\mu}m$, $Ceramill^{(R)}$ $67.64{\pm}40.38{\mu}m$, $Rainbow^{TM}$ $125.07{\pm}42.19{\mu}m$, $Zirkonzhan^{(R)}$ $105.02{\pm}44.61{\mu}m$로 측정되었다. 결론: 금속-도재관 코어나 CAD/CAM에 비해 MAD/MAM 방식으로 제작된 코어의 변연 간격이 큰 것으로 나타났다 (P < .05). MAD/MAM 시스템 내에서도 $Ceramill^{(R)}$, $Zirkonzhan^{(R)}$, $Rainbow^{TM}$ 순으로 변연 간격이 작은 것으로 측정되었으며, 이중 $Ceramill^{(R)}$은 CAD/CAM 시스템인 $Cercon^{(R)}$과 변연 간격에 유의차가 없었다.

Keywords

References

  1. Seghi RR, Sorensen JA. Relative flexural strength of six new ceramic materials. Int J Prosthodont 1995;8:239-46.
  2. Tinschert J, Natt G, Mautsch W, Spiekermann H, Anusavice KJ. Marginal fit of alumina-and zirconia-based fixed partial dentures produced by a CAD/CAM system. Oper Dent 2001;26:367-74.
  3. Yang JH, Yeo YS, Lee SH, Han JS, Lee JB. Marginal fit of Celay/In-ceram, conventional In-ceram and Empress 2 All-ceramic single crowns. J Korean Acad Prosthodont 2002;40:131-9.
  4. Rekow ED. High-technology innovations--and limitations--for restorative dentistry. Dent Clin North Am 1993;37:513-24.
  5. Reich S, Wichmann M, Nkenke E, Proeschel P. Clinical fit of allceramic three-unit fixed partial dentures, generated with three different CAD/CAM systems. Eur J Oral Sci 2005;113:174-9. https://doi.org/10.1111/j.1600-0722.2004.00197.x
  6. Gardner FM. Margins of complete crowns--literature review. J Prosthet Dent 1982;48:396-400. https://doi.org/10.1016/0022-3913(82)90072-5
  7. Kim DK, Cho IH, Lim JH, Lim HS. On the marginal fidelity of allceramic core using CAD/CAM system. J Korean Acad Prosthodont 2003;41:20-34.
  8. Holmes JR, Bayne SC, Holland GA, Sulik WD. Considerations in measurement of marginal fit. J Prosthet Dent 1989;62:405-8. https://doi.org/10.1016/0022-3913(89)90170-4
  9. Carter JM, Sorensen SE, Johnson RR, Teitelbaum RL, Levine MS. Punch shear testing of extracted vital and endodontically treated teeth. J Biomech 1983;16:841-8. https://doi.org/10.1016/0021-9290(83)90008-8
  10. Strawn SE, White JM, Marshall GW, Gee L, Goodis HE, Marshall SJ. Spectroscopic changes in human dentine exposed to various storage solutions-short term. J Dent 1996;24:417-23. https://doi.org/10.1016/0300-5712(95)00106-9
  11. Sorensen JA. A standardized method for determination of crown margin fidelity. J Prosthet Dent 1990;64:18-24. https://doi.org/10.1016/0022-3913(90)90147-5
  12. Leong D, Chai J, Lautenschlager E, Gilbert J. Marginal fit of machine-milled titanium and cast titanium single crowns. Int J Prosthodont 1994;7:440-7.
  13. Moon BH, Yang JH, Lee SH, Chung HY. A study on the marginal fit of all-ceramic crown using ccd camera. J Korean Acad Prosthodont 1998;36:273-92.
  14. Groten M, Axmann D, Pro ¨bster L, Weber H. Determination of the minimum number of marginal gap measurements required for practical in-vitro testing. J Prosthet Dent 2000;83:40-9. https://doi.org/10.1016/S0022-3913(00)70087-4
  15. Gassino G, Barone Monfrin S, Scanu M, Spina G, Preti G. Marginal adaptation of fixed prosthodontics: a new in vitro 360-degree external examination procedure. Int J Prosthodont 2004;17:218-23.
  16. Christensen GJ. Marginal fit of gold inlay castings. J Prosthet Dent 1966;16:297-305. https://doi.org/10.1016/0022-3913(66)90082-5
  17. Palomo F, Peden J. Periodontal considerations of restorative procedures. J Prosthet Dent 1976;36:387-94. https://doi.org/10.1016/0022-3913(76)90159-1
  18. Molin MK, Karlsson SL, Kristiansen MS. Influence of film thickness on joint bend strength of a ceramic/resin composite joint. Dent Mater 1996;12:245-9. https://doi.org/10.1016/S0109-5641(96)80030-3
  19. McLean JW, von Fraunhofer JA. The estimation of cement film thickness by an in vivo technique. Br Dent J 1971;131:107-11. https://doi.org/10.1038/sj.bdj.4802708
  20. Kydd WL, Nicholls JI, Harrington G, Freeman M. Marginal leakage of cast gold crowns luted with zinc phosphate cement: an in vivo study. J Prosthet Dent 1996;75:9-13. https://doi.org/10.1016/S0022-3913(96)90411-4
  21. Sulaiman F, Chai J, Jameson LM, Wozniak WT. A comparison of the marginal fit of In-Ceram, IPS Empress, and Procera crowns. Int J Prosthodont 1997;10:478-84.
  22. Shin HS, Kim SG. Comparison of marginal fit before and after porcelain build-up of two kinds of CAD/CAM zirconia all-ceramic restorations. J Korean Acad Prosthodont 2008;46:529-34.
  23. Denissen H, Dozic′A, van der Zel J, van Waas M. Marginal fit and short-term clinical performance of porcelain-veneered CICERO, CEREC, and Procera onlays. J Prosthet Dent 2000;84:506-13. https://doi.org/10.1067/mpr.2000.110258
  24. Valderrama S, Van Roekel N, Andersson M, Goodacre CJ, Munoz CA. A comparison of the marginal and internal adaptation of titanium and gold-platinum-palladium metal ceramic crowns. Int J Prosthodont 1995;8:29-37.

Cited by

  1. Marginal fit of three-unit zirconia anterior fixed dental prostheses fabricated using CAD/CAM and MAD/MAM system vol.49, pp.2, 2011, https://doi.org/10.4047/jkap.2011.49.2.145
  2. Comparison of marginal and internal fit of zirconia abutments with titanium abutments in internal hexagonal implants vol.54, pp.2, 2016, https://doi.org/10.4047/jkap.2016.54.2.93
  3. 열-가압을 이용한 금속 도재관과 전통적인 금속 도재관의 변연 적합도 비교 연구 vol.48, pp.4, 2010, https://doi.org/10.4047/jkap.2010.48.4.273