References
- Hwa-Chang Song, Byong-Jun Lee, and Young-Hwan Moon, "An Interior Point Method based Reactive Optimal Power Flow Incorporating Margin Enhancement Constraints," KIEE International Transactions on Power Engineering, Vol.5-A, No.2, pp.152-158, 2005.
- D. Pudjianto, S. Ahmed, and G. Strbac, "Allocation of VAR supportusing LP and NLP based optimal power flows," IEE Proc. Generation, Transmission, and Distribution, Vol.149, No.4, pp.377-383, 2002. https://doi.org/10.1049/ip-gtd:20020200
- R. He, G. A. Taylor, and Y. H. Song, "Multi-objective optimal reactive power flow including voltage security and demand profile classification," International Journal of Electrical Power & Energy Systems, Vol. 30, pp.327-336, 2008. https://doi.org/10.1016/j.ijepes.2007.12.001
- Y.-j. Zhang and Z. Ren, "Real-time optimal reactive power dispatch using multi-agent technique," Electric Power Systems Research, Vol.69, pp.259-265, 2004. https://doi.org/10.1016/j.epsr.2003.10.009
- B. Venkatesh and R. Ranjan, "Fuzzy EP algorithm and dynamic data structure for optimal capacitor allocation in radial distribution systems," Generation, Transmission and Distribution, IEE Proceedings-, Vol. 153, pp.80-88, 2006. https://doi.org/10.1049/ip-gtd:20050054
- C. Yuan-Lin, "Weak bus-oriented optimal multi-objective VAr planning," Power Systems, IEEE Transactions on, Vol.11, pp.1885-1890, 1996. https://doi.org/10.1109/59.544659
- C. Yuan-Lin and L. Chun-Chang, "Optimal multiobjective VAr planning using an interactive satisfying method," Power Systems, IEEE Transactions on, Vol. 10, pp.664-670, 1995. https://doi.org/10.1109/59.387901
- N. Srinivas and K. Deb, "Multiobjective optimization using nondominated sorting in genetic algorithms," Evol. Comp. J., Vol.2, pp.221–248,1995. https://doi.org/10.1162/evco.1994.2.3.221
- C. M. Fonseca and P. J. Fleming., "Multiobjective optimization and multiple constraint handling with evolutionary algorithms-part I: a unified formulation," System, Man, Cybernetics, IEEE Transaction on, Vol.3, pp.26-37, 1998. https://doi.org/10.1109/3468.650319
- Horn, J. Nafpliotis, N. Goldberg, D. E. "A niched Pareto genetic algorithm for multiobjective optimization Evolutionary Computation," in Proceedings of the First IEEE World Congress on Computational Intelligence. 1994, https://doi.org/10.1109/ICEC.1994.350037
- E. Zitzler and L. Thiele, "Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach," Evolutionary Computation, IEEE Transactions on, Vol.3, pp.257-271, 1999. https://doi.org/10.1109/4235.797969
- K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," Evolutionary Computation, IEEE Transactions on, Vol.6, pp.182-197, 2002. https://doi.org/10.1109/4235.996017
- Abido M A, Bakhashwain J M "Optimal VAR dispatch using a multiobjective evolutionary algorithm," International Journal of Electrical Power & Energy Systems. Vol.27, pp.13-20, 2005. https://doi.org/10.1016/j.ijepes.2004.07.006
- Varadarajan M and Swarup K S. "Solving multiobjective optimal power flow using differential evolution," IET Generation, Transmission & Distribution. Vol.2, No.5, pp.720-730, 2008. https://doi.org/10.1049/iet-gtd:20070457
- N. Krasnogor and J. Smith, "A tutorial for competent memetic algorithms: Model, taxonomy and design issues," IEEE Trans. Evol. Comput., Vol.9, No.5, pp. 474-488, Oct., 2005. https://doi.org/10.1109/TEVC.2005.850260
- W. Hart, N. Krasnogor, J. Smith, Eds. Recent Advances in Memetic Algorithms. Berlin, Germany: Springer-Verlag, 2004.
- Iba K. "Reactive power optimization by genetic algorithm," IEEE Transactions on Power Systems. Vol.9, No.2, pp.685-692, 1994. https://doi.org/10.1109/59.317674
- Bhagwan D D and Patvardhan C. "A new hybrid evolutionary strategy for reactive power dispatch," Electric Power Systems Research. Vol.65, No.2, pp.83-90, 2003. https://doi.org/10.1016/S0378-7796(02)00209-2
- Bakirtzis A G Biskas P N Zoumas C E, et al. "Optimal power flow by enhanced genetic algorithm," IEEE Transactions on Power Systems. Vol.17, No.2, pp.229-236, 1994. https://doi.org/10.1109/TPWRS.2002.1007886
- Goldberg D E Genetic. Algorithms in Search, Optimization, and Machine Learning. Reading. Reading, Addison-Wesley, 1989
- A. Abraham, L. Jain, R. Goldberg. Evolutionary multiobjective optimization: theoretical advances and applications. New York: Springer Science, 2005
- E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Swiss Federal Institute of Technology, Lausanne, Switzerlnd, Tech. Rep. TIK-Rep. 103, 2001.
- Z. Boming, C. Shousun, High Electric Power Network Analysis, Publisher of Tsinghua University, Beijing, 1996, pp.311-313.
- Jaszkiewicz A (2004) On the computational efficiency of multiple objective metaheuristics: the knapsack problem case study. Eur J Oper Res 158:418-433 https://doi.org/10.1016/j.ejor.2003.06.015
- Murata T, Kaige S, and Ishibuchi H. "Generalization of dominance relation-based replacement rules for memetic EMO algorithms," Lect Notes Comput Sci 2723, pp: 1233-1244, 2003
- Hisao Ishibuchi and Kaname Narukawa. Some Issues on the Implementation of Local Search in Evolutionary Multiobjective Optimization. GECCO 2004, LNCS 3102, pp.1246-1258, 2004.
Cited by
- Adaptive multiple evolutionary algorithms search for multi-objective optimal reactive power dispatch vol.24, pp.6, 2014, https://doi.org/10.1002/etep.1730
- Game model-based co-evolutionary algorithm with non-dominated memory and Euclidean distance selection mechanisms for multi-objective optimization vol.9, pp.5, 2011, https://doi.org/10.1007/s12555-011-0513-8
- Voltage Stability Constrained Optimal Power Flow Using NSGA-II vol.02, pp.01, 2013, https://doi.org/10.4236/cweee.2013.21001