DOI QR코드

DOI QR Code

Hydraulic Characteristics of Busan Clay in the Floodplain of the Nakdong River Delta

낙동강 삼각주 범람원에서 부산점토의 수리학적 특성

  • 정성교 (동아대학교 토목공학과) ;
  • 이남기 (부산도시공사 개발팀) ;
  • 이정만 (동아대학교 대학원 토목공학과) ;
  • 민세찬 (동아대학교 대학원 토목공학과) ;
  • 홍양표 (동아대학교 대학원 토목공학과)
  • Received : 2010.07.06
  • Accepted : 2010.10.20
  • Published : 2010.11.30

Abstract

To predict the settlement rate of a ground area that incorporates vertical drains, it is desirable to conduct various kinds of advanced field and laboratory tests for hydraulic properties. However, it is urgently needed to appropriately evaluate the hydraulic properties using the results of conventional soil tests which are extensively used for local practice. To achieve this purpose, a number of CPT dissipation test, laboratory permeability and consolidation tests were performed at five sites in the floodplain of the Nakdong River delta, and the test data were comprehensively analyzed. As a result, it is found that the coefficients of horizontal consolidation ($C_{h,NC}$) and permeability ($k_{h,OC}$) of the clay agreed well with those of the CPT-based methods proposed by Baligh and Levadoux (1986). The values of $C_{h,NC}$ and $k_{h,OC}$ were in the range of $0.4{\sim}3.0\;cm^2/sec$ and $0.40{\sim}2.50\;cm^2/sec$, each of which slightly increases or decreases with depth, respectively. It was also inferred that these trends seem to reflect the depositional environments of the clay.

연직배수공이 매설되는 점토지반에서 압밀속도를 예측하기 위해서는 다양한 종류의 고급 실내 및 현장토질실험을 수행하여 합리적으로 수리학적 특성치를 결정하는 것이 바람직하다. 그러나 실무에서와 같이 보편적인 수행할 경우에 수리학적 특성을 합리적으로 규명하는 것이 우선 필요하다. 이를 위하여 낙동강 허구의 범람원 지역에 속하는 5개 지점을 선정하여 수많은 CPT 소산시험, 보편적인 실내 투수 및 압밀실험을 실시하였으며, 그들을 이용하여 종합적으로 분석하였다. 그 결과, 이 점토의 수평방향 압밀계수($C_{h,NC}$) 및 투수계수($k_{h,OC}$)는 Balight & Levadoux(1986)의 제안법을 적용한 CPT소산시험결과가 가장 적합한 것으로 나타났다. 여기서 $C_{h,NC}$$k_{h,OC}$는 각각 $0.4{\sim}3.0\;cm^2/sec$$(1{\sim}3){\times}10^{-9}m/sec$ 범위에 있으며, 두 값은 깊이에 따라 약간씩 증가 및 감소하는 경향을 보였다. 이러한 퇴적환경을 잘 반영하는 것으로 해석되었다.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. 곽정민, 정성교, 백승훈, 이영남, 조기영 (2003), 부산점토에 대한 시료채취기술에 따른 시료교란과 시험방법에 따른 압밀정수의 비교. 한국지반공학회 논문집, 한국지반공학회, 19(4), 8월: 43-53.
  2. 동아대학교 건설기술연구소 (2006), 명지.신호지역 학술연구용역 정밀지반조사 최종보고서.
  3. 류춘길, 강소라, 정성교 (2005), 악동강 삼각주 서부지역의 제4기 후기 고환경 변화. 한국지구과학회지, 제26권, 5호, 6월: 443-458.
  4. 정성교, 장우영, E. Ninjgarav, 류춘길 (2006a), 낙동강 하구지역 부산점토의 퇴적환경에 따른 압축특성. 한국지반공학회 논문집, 22(12): 57-65.
  5. 정성교, 장우영, E. Ninjgarav, 김성렬 (2006b), 실내실험에 의한 부산점토의 투수특성 분석. 한국지반공학회 논문집, 22(11): 133-142.
  6. Baligh, M.M. and Lcvadoux, J.N. (1980), Pore pressure dissipation after cone penetration. MIT, Department of Civil Engineering, Cambridge, Mass., Report R80-11.
  7. Baligh, M.M. and Levadoux, J.N. (1986), Consolidation after undrained piezocone penetration. II: interpretation. Journal of Geotechnical Engineering, ASCE, Vol. 112, No, 7, 727-745. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:7(727)
  8. Chai, J.C and Miura, N. (1999), Investigation of factors affecting vertical drain behavior. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.125, No.3, 216-226. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:3(216)
  9. Chu, J, Bo, M.W, Chang, M.F. and Choa, V. (2002), Consolidation and permeability properties of Singapore Marine clay, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.128, No.9. 724-732. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:9(724)
  10. Chung, S.G. (1999), Engineering properties and consolidation characteristics of Kimhae estuarine clayey soil. Thick Deltaic Deposits, ATC-7 Workshop, Special Publication at the 11th ARC on SMGE, Seoul: 93-108.
  11. Chung, S.G. & P.H. Giao (2001), Examination of Pusan clays at a reference testing site. Lowland Technology International, IALT, Vol.3, No.2, pp.1-14.
  12. Chung, S.G., P.H. Giao, T.S, Nagaraj, and J.M. Kwag (2002a), Characterization of estuarine marine clays for coastal reclamation in Pusan, Korea. Marine Georesources and Geotechnology, 20(4):237-254. https://doi.org/10.1080/03608860290051930
  13. Chung, S.G., P.H. Giao, G.J. Kim and S. Leroueil (2002b), Geotechnical characteristics of Pusan clays. Canadian Geotechnical Journal, 39(5): 1050-1060. https://doi.org/10.1139/t02-055
  14. Chung, S.G., P.H. Giao and H. Tanaka (2002c), Geotechnical characteristics and engineering problems of Pusan clays. International Workshop on Characterisation and Engineering Properties of Natural Soils, Vol.1, Dec. 2-4, Singapore, Balkema: 505-541.
  15. Chung S.G., P.H. Giao, J.M. Kwag and H. Tanaka (2002d), Comparative study on Korean and Japanese samplers in investigation of Pusan soft clays. Intl. Workshop on Foundation Design Codes and Soil investigation in view of international Harmonization and Performance Based Design, IWS Kamakura 2002: 183-189.
  16. Chung, S.G., S.H. Beck, C.K. Ryu, and S.W. Kim (2003), Keynote Lecture: Geotechnical characterization of Pusan clays. Korea-Japan Joint Workshop on Characterization of Thick Clay Deposits, Reclamation and Port Construction, ATC-7, April 8-10, Busan:3-44.
  17. Chung, S.G., J.M. Kwag, P.H. Giao, S.H. Back, and K.N. Prasad (2004), A study on soil disturbance of Pusan clays with reference to drilling, sampling and extruding. Geotechnique, 54(1): 61-65. https://doi.org/10.1680/geot.2004.54.1.61
  18. Chung, S.G., C.K. Ryu, K.Y. Jo, and D.Y. Huh (2005), Geological and geotechnical charactetistics of marine clays at the Busan new port. Marine Georesources and Geotechnology, Vol. 23, No. 3:235-251, July-August. https://doi.org/10.1080/10641190500225712
  19. Chung, S.G. (2005), Keynote Lecture: Sampling techniques and their effects in characterizing of Pusan clay. Proceedings. Current Geotechnical Issues of Thick Clay Deposits, Joint Symposium of ISSMGE ATC7 and KGS TC, Sept 21-22, Busan, 3-36; also Proceedings of International Conf on Civil and Environmental Engineering, ICCEE-2005, Higashi-Hiroshima, Japan, Oct 26-27, Japan, 29-59.
  20. Chung, S.G., Kim, S.K., Kang, Y.J., Im, J.C., and Prasad, K.N. (2006), Failure of a breakwater founded on a thick normally consolidated clay. Geotechnique, 56(6): 393-409. https://doi.org/10.1680/geot.2006.56.6.393
  21. Chung, S.G., N.K. Lee, and S.R. Kim (2009), Hyperbolic method for prediction of prefabricated vertical drains performance. J. of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 135, No. 10, 1519-1528. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000042
  22. Chung, S.G. and Lee, N.K. (2010), Smear effect and well resistance of PVD-installed ground based on hyperbolic method. J. of Geotechnical and Geoenvironmental Engineering, ASCE, 136(4):640-642. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000256
  23. Chung, S.G., Chung, J.G., Jang, W.Y. and Lee, J,M, (2010a), Correlations between CPT and FVT results for Busan Clay. Marine Georesources & Geotechnology, Vol. 28, No. 1, 49-63. https://doi.org/10.1080/10641190903358649
  24. Chung, S.G., Ryu, C.K., Min, S.C., Lee, J.M., and Hong, Y.P. (2010b). Geotechnical properties and depositional environment of Busan clay in the floodplain of the Nakdong River delta. KSCE Journal of Civil Engineering, Springer. (in review)
  25. Chung, S.G. and Kwon, H.J. (2010), Oil-operated fixed piston sampler and its applicability. J. of Geotechnical and Geoenvironmental Engineering, ASCE. (in review)
  26. Clayton, C.R.I., A. Siddique and R.J., Hopper (1998), Effects of sampler design on tube sampling disturbance - Numerical and analytical investigations, Geotechnique, 48(6): 847-867. https://doi.org/10.1680/geot.1998.48.6.847
  27. Clayton, C.R.I., M. C. Matthews and N. E. Simons (2002), Site investigation, Blackie.
  28. Dobak, P. (2008), Evaluation of consolidation parameters in CL tests: theoretical and practical aspects. Geological Quarterly, 52(4): 397-410.
  29. Hight, D.W. (2000), Sampling effects in soft clay: An update, 4th Intl. Geotechnical Engineering Conference, Cairo, Egypt, 24-27 January: 1- 41.
  30. Lee, N.K. and Chung, S.G. (2010), Reevaluation of the factors influencing the consolidation of ground hy incorporating prefabricated vertical drains. KSCE Journal of Civil Engineering, 14(2):155-164. https://doi.org/10.1007/s12205-010-0155-z
  31. Leroueil, S. and Hight, D.W. (2002), Behaviour and properties of natural soils and soft rocks. International Workshop on Characterisation and Engineering Properties of Natural Soils, Vol. 1, Dec. 2-4, Singapore, Balkema: 29-254.
  32. Leroueil, S., Diene, M., Tavenas, F., Kabbaj, M., and La Rochelle, P. (1988), Direct determination of the permeability of clay under embankment. ASCE, J. Of GED, 114(6): 645-657.
  33. Lunne, T., Robertson, P.K. and Powell, J.J.M. (1997), Cone Penetration Testing in Geotechnical Practice. Blackie Academic & Frofessional, 1 st edition, 312p.
  34. Magnan, J.P., Pilot, G. and Queyroi, D. (1983), Back analysis of soil consolidation around vertical drains. 8th ECSMFE, Vol. 2, Helsinki, Balkema, 653-658.
  35. Randolph, M.F. and Wroth, C.P. (1979), An analytical solution for the consolidation around a driven pile. Proceedings of the International Journal for Numerical and Analytical Methods in Geotechnics, 3(3): 217-229.
  36. Tanaka, H. and M. Tanaka (1999), Key factors governing sample quality. Proc. Intl. Symp. On Characterization of Soft Marine Clays, Yokosuka, Edited by Tsuchida & Nakase, Balkema: 52-82.
  37. Tavenas, F., Tremblay, M., Larouche, G. and Leroueil, S. (1986), In Situ measurement of permeability in soft clays. ASCE Specialty Conf. In Situ 86, Blacksburg, VA, pp. 1034-1048.
  38. Teh, C.l. (1987). An analytical study of the cone penetration test. PhD thesis, Oxford University.
  39. Teh, C.l. and Houlsby, G.I. (1991), An analytical study of the cone penetration test in clay. Geotechnique, 41(1), 17-34. https://doi.org/10.1680/geot.1991.41.1.17
  40. Torstensson, B.A. (1975), Pore pressure sounding instrument. Proc. ASCE Special Conf., In Situ Measurement of Soil Properties, Raleigh, 2: 48-54.
  41. Wissa, A.E.Z., Christian, J.T., Davis, E.H., and Heiberg, S. (1971), Consolidation at constant rate of strain. Journal of the Soil Mechanics and Foundations Division, ASCE, 97(SM10): 1393-1413.