DOI QR코드

DOI QR Code

Estimation of Rainfall Intensity for MTSAT-1R Data using Microwave Rainfall

마이크로웨이브 강수량을 이용한 MTSAT-1R 위성의 강우강도 추정

  • Jee, Joon-Bum (Natural Science Institute, Gangneung-Wonju National University) ;
  • Lee, Kyu-Tae (Dept. of Atmospheric and Environmental Sciences, Gangneung-Wonju National University)
  • 지준범 (강릉원주대학교 자연과학연구소) ;
  • 이규태 (강릉원주대학교 대기환경과학과)
  • Received : 2010.08.11
  • Accepted : 2010.10.16
  • Published : 2010.10.31

Abstract

Rainfall intensity was estimated using the MTSAT-1R infrared channels and the microwave satellite precipitation data. Brightness temperature of geostationary satellite is matched temporal and spatial to a variety of microwave satellite(SSM/I, SSMIS, AMSU-B, AMSRE, TRMM) precipitation data. Rainfall intensity was calculated by the look -up table using relationships of MTSAT-1R brightness temperature and microwave precipitation. Estimated rainfall is verified using by precipitation of TRMM satellite(TRMM3B42) and ground rainfall as AWS from Jul. 21 2008 to Jul. 25 2008. The results of rainfall estimated TRMM 2A12(TMI) that validated by AWS and TRMM3B42 precipitation are represented highly 0.38 and 0.61 by correlation coefficient, 5.81 mm/hr and 2.44 mm/hr by RMSE, 0.79 and 0.84 by POD and 0.65 and 0.87 by PC, respectively. Overall, estimated rainfall using by microwave satellite calculated 5 mm/hr or more comparing by AWS and 5 mm/hr or more comparing by TRMM3B42 precipitation, respectively. Validation results of correlation coefficient are shown series of TRMM 2A12, AMSRE, SSM/I, AMSU-B and SSMIS.

MTSAT-1R의 적외 채널 밝기온도와 마이크로웨이브 강수량 자료를 이용하여 강수량을 추정하였다. 정지위성의 밝기온도와 다양한 마이크로웨이브(SSM/I, SSMIS, AMSU-B, AMSRE, TRMM) 강수량의 시공간일지 자료생성 및 관계성을 분석하여 MTSAT-1R 밝기온도와 마이크로웨이브 강수량의 조견표를 작성하였으며 밝기온도에 적용하여 강수량을 산출하였다. 산출 강수량은 지상 AWS 및 TRMM 위성자료를 이용하여 검증하였다. TRMM 2A12(TMI) 방법에 산출 강수량은 AWS 및 TRMM3B42 강수량 검증에서 상관계수는 0.38과 0.61, RMSE는 5.81과 2.44 mm/hr, PC는 0.79와 0.84 그리고 POD는 0.65와 0.87로 가장 높은 결과를 보였다. 전체적으로 위성을 이용한 강수량 산출에서 AWS 강수량과 비교하여 5 mm/hr 이상 그리고 TRMM3B42 강수량과 비교하여 2 mm/hr 이상 많은 강수를 추정하였다. 강수량의 검증 결과는 TRMM 2A12, AMSRE, SSM/I, AMSU-B 및 SSMIS 계열 방법순서로 상관성 등의 대부분 검증에서 높은 결과를 나타내었다.

Keywords

Acknowledgement

Grant : 통신해양기상위성 기상자료처리시스템(CMDPS) 개발

References

  1. Adler, R. F. and A. J. Negri, 1988. A satellite infrared technique to estimate tropical convective and stratiform rainfall. J. Appl. Meteor., 27: 30-51. https://doi.org/10.1175/1520-0450(1988)027<0030:ASITTE>2.0.CO;2
  2. Arkin, P. A., 1979. The relationship between fractional coverage of high cloud and rainfall accumulations during GATE over the B-scale array. Mon. Wea. Rev., 107: 1382-1387. https://doi.org/10.1175/1520-0493(1979)107<1382:TRBFCO>2.0.CO;2
  3. Arkin, P. A. and B. M. Meisner, 1987. The Relationship between Large-Scale Convective Rainfall and Cold Cloud over the Western Hemisphere during 1982-84. Mon. Wea. Rev., 115: 51-74. https://doi.org/10.1175/1520-0493(1987)115<0051:TRBLSC>2.0.CO;2
  4. Atlas, D., D. Rosenfeld, and D. B. Wolff, 1990. Climatologically tuned reflectivity-rainrate relations and links to area-time integrals. J. Appl. Meteor., 29: 1120-1135. https://doi.org/10.1175/1520-0450(1990)029<1120:CTRRRR>2.0.CO;2
  5. Ba, M. and A. Gruber, 2001. GOES Multispectral Rainfall Algorithm(GMSRA). J. Appl. Meteor., 29: 1120-1135.
  6. Barrett E. C., C. C. Kidd, and J. O. Bailey, 1988. The Special Sensor Microwave/Imager: A new instrument with rainfall monitoring potential. Int. J. Remote Sens., 9: 1943-1950. https://doi.org/10.1080/01431168808954993
  7. Crosson et al., 1996. Assessment of rainfall estimates using a standard Z-R relationship and the probability matching method applied to composite radar data in Central Florida. J. Appl. Meteor., 35: 1203-1219. https://doi.org/10.1175/1520-0450(1996)035<1203:AOREUA>2.0.CO;2
  8. Inoue,T. and S. A. Ackerman, 2002. Radiative Effects of Various Cloud Types as Classified by the Split Window Technique over the Eastern Sub-tropical Pacific Derived from Collocated ERBE and AVHRR Data., J. of Meteorological Society of Japan, 80: 1382-1394.
  9. Inoue, T., 1987. A cloud type classification with NOAA-7 split-window measurements. J. Geophys. Res., 92: 3991-4000. https://doi.org/10.1029/JD092iD04p03991
  10. Joyce, R. J., J. E. Janowiak,P. A. Arkin, and P. Xie, 2004. CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution, J. of Hydrometeor., 5(3): 487-503. https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
  11. Kuligowski, R. J., 2002. A self-calibrating GOES rainfall algorithm for short-term rainfall estimates. J. Hydrometeor., 3: 112-130. https://doi.org/10.1175/1525-7541(2002)003<0112:ASCRTG>2.0.CO;2
  12. Kummerow C., Coauthors, 2001. The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40: 1801-1820. https://doi.org/10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2
  13. Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998. The Tropical Rainfall Measuring Mission (TRMM) Sensor Package. J. Atmos. Oceanic Technol., 15: 809-817. https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2
  14. Kurino, T., 1997. A satellite infrared technique for estimating "deep/shallow" convective and stratiform precipitation. Adv. Space Res., 19: 511-514. https://doi.org/10.1016/S0273-1177(97)00063-X
  15. Lavizzani, V., 1999. Convective rain from a satellite prospective: Achievements and challenges. SAF Training Workshop-Nowcasting and Very Short Forecasting, Madrid, 9-11 Dec., EUMESAT, EUM P 25: 75-84.
  16. Negri, A. J., R. F. Adler, and P. J. Wetzel, 1984. Rain estimation from satellites: an examination of the Griffith-Woodley technique, J. Climate Appl. Meteoe., 26: 1565-1576.
  17. Rossow, W. B. and R. A. Schiffer, 1999. Advances in understanding Clouds form ISCCP. Bull. Amer. Meteor. Soc., 80: 2261-2287. https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2
  18. Scofield, R. A. and R. J. Kuligowski, 2003. Status and Outlook of Operational Satellite Precipitation Algorithms for Extreme-Precipitation Events., Weather and Forecasting, 18: 1037-1051. https://doi.org/10.1175/1520-0434(2003)018<1037:SAOOOS>2.0.CO;2
  19. Sorooshian, S., K.-L. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite, 2000. An evaluation of PERSIANN system satellitebased estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81: 2035-2046. https://doi.org/10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2
  20. Spencer R. W., H. M. Goodman, and R. E. Hood, 1989. Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6: 254-273. https://doi.org/10.1175/1520-0426(1989)006<0254:PROLAO>2.0.CO;2
  21. Turk, F. J., E. E. Ebert, H.-J. Oh, B.-J. Sohn, V. Levizzani, E. A. Smith and R. R. Ferraro, 2003. Validation of an operational global precipitation analysis at short time scales. Prepr. 12th Conf. on Satellite Meteor. and Oceanography, Long Beach, CA, 21.
  22. Vincente, G. A., R. A. Scofield, and W. P. Menzel, 1998. The operational GOES infrared rainfall estimation technique. Bull. Amer. Meteor. Soc., 79: 1883-1898. https://doi.org/10.1175/1520-0477(1998)079<1883:TOGIRE>2.0.CO;2
  23. Weng, F., L. Zhao, G. Poe, R. R. Ferraro, X. Li, and N. C. Grody, 2003. Advanced Microwave Sounding Unit (AMSU) cloud and precipitation algorithms. Radio Sci., 38(4): 8068, doi:10.1029/2002RS002679.
  24. Wentz, Frank J. and Roy W. Spencer, 1998. SSM/I Rain Retrievals within a UnifiedOcean Algorithm, J. of Atmos. Sci., 55: 1613-1627. https://doi.org/10.1175/1520-0469(1998)055<1613:SIRRWA>2.0.CO;2
  25. Zhang, M. and R. A. Scofield, 1994 : Artificial neural network techniques for estimating convective rainfall and recognizing cloud mergers from satellite data. Int. J. Remote Sens., 15: 3241-3261. https://doi.org/10.1080/01431169408954324