DOI QR코드

DOI QR Code

Activation of Macrophages by Exopolysaccharide Produced by MK1 Bacterial Strain Isolated from Neungee Mushroom, Sarcodon aspratus

  • Im, Sun-A (College of Pharmacy, Chungbuk National University) ;
  • Wang, Wenxia (Department of Microbiology, College of Natural Sciences, Chungbuk National University) ;
  • Lee, Chong-Kil (College of Pharmacy, Chungbuk National University) ;
  • Lee, Young-Nam (Department of Microbiology, College of Natural Sciences, Chungbuk National University)
  • Received : 2010.11.11
  • Accepted : 2010.11.24
  • Published : 2010.12.31

Abstract

Background: The MK1 strain, a novel bacterial isolate from soft-rotten tissue of the Neungee mushroom, produces copious amounts of exopolysaccharide (EPS) in a dextrose minimal medium. This study examined the molecular characteristics and immunomodulatory activity of MK1 EPS. Methods: The EPS in the culture supernatant was purified by cold ethanol precipitation, and characterized by SDS- PAGE/silver staining and Bio-HPLC. The immunomodulatory activities of the EPS were examined using the mouse monocytic cell line, RAW 264.7 cells. Results: The molecular weights of the purified EPS were rather heterogeneous, ranging from 10.6 to 55 kDa. The EPS was composed of glucose, rhamnose, mannose, galactose, and glucosamine at an approximate molar ratio of 1.00 : 0.8 : 0.71 : 0.29 : 0.21. EPS activated the RAW cells to produce cytokines, such as TNF-${\alpha}$ and IL-$1{\beta}$, and nitric oxide (NO). EPS also induced the expression of co-stimulatory molecules, such as B7-1, B7-2 and ICAM-1, and increased the phagocytic activity. The macrophage-activating activity of EPS was not due to endotoxin contamination because the treatment of EPS with polymyin B did not reduce the macrophage-activating activity. Conclusion: The EPS produced from the MK1 strain exerts macrophage-activating activity.

Keywords

References

  1. Welman AD, Maddox IS: Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends Biotechnol 21;269-274, 2003 https://doi.org/10.1016/S0167-7799(03)00107-0
  2. Sutherland IW: Bacterial exopolysaccharides. Adv Microb Physiol 8;143-213, 1972 https://doi.org/10.1016/S0065-2911(08)60190-3
  3. Wang H, Jiang X, Mu H, Liang X, Guan H: Structure and protective effect of exopolysaccharide from P. Agglomerans strain KFS-9 against UV radiation. Microbiol Res 162;124-129, 2007 https://doi.org/10.1016/j.micres.2006.01.011
  4. Sutherland I: Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147;3-9, 2001 https://doi.org/10.1099/00221287-147-1-3
  5. Kumar CG, Joo HS, Choi JW, Koo YM, Chang CS: Purification and characterization of an extracellular polysaccharide from haloalkalophilic Bacillus sp. I-450. Enzyme Microb Technol 34;673-681, 2004 https://doi.org/10.1016/j.enzmictec.2004.03.001
  6. Iyer A, Mody K, Jha B: Rheological properties of an exopolysaccharide produced by a marine Enterobacter cloaceae. Natl Acad Sci Lett 28;119-123, 2005
  7. Lin CC, Casida LE: GELRITE as a gelling agent in media for the growth of thermophilic microorganisms. Appl Environ Microbiol 47;427-429, 1984
  8. Kalogiannis S, Iakovidou G, Liakopoulou-Kyriakides M, Kyriakidis DA, Skaracis GN: Optimization of xanthan gum production by Xanthomonas campestris grown in molasses. Process Biochem 39;249-256, 2003 https://doi.org/10.1016/S0032-9592(03)00067-0
  9. Kong J, Lee H, Hong J, Kang Y, Kim J, Chang M, Bae S: Utilization of a cell-bound polysaccharide produced by the marine bacterium Zooglea sp: new biomaterial for metal adsorption and enzyme immobilization. J Mar Biotechnol 6;99-103, 1998
  10. Okutani K: Antitumor and immunostimulant activities of polysaccharides produced by a marine bacterium of the genus Vibrio. Bull Jap Soc Sci Fish 50;1035-1037, 1984 https://doi.org/10.2331/suisan.50.1035
  11. Okutani K: Antiviral activities of sulfated derivatives of a fucosamine-containing polysaccharide of marine bacterial origin. Nippon Suisan Gakkaishi 58;927-930, 1992 https://doi.org/10.2331/suisan.58.927
  12. Abbad Andaloussi S, Talbaoui H, Marczak R, Bonaly R: Isolation and characterization of exocellular polysaccharides produced by Bifidobacterium longum. Appl Microbiol Biotechnol 43;995-1000, 1995 https://doi.org/10.1007/BF00166915
  13. Roberts CM, Felt WF, Osman SF, Wijey C, O'Connor JV, Hoover DG: Exopolysaccharide production by Bifidobacterium longum BB-79. J Appl Bacteriol 78;463-468, 1995 https://doi.org/10.1111/j.1365-2672.1995.tb03085.x
  14. Sreekumar O, Hosono A: The antimutagenic properties of a polysaccharide produced by Bifidobacterium longum and its cultured milk against some heterocyclic amines. Can J Microbiol 44;1029-1036, 1998 https://doi.org/10.1139/w98-103
  15. Arena A, Maugeri TL, Pavone B, Iannello D, Gugliandolo C, Bisignano G: Antiviral and immunoregulatory effect of a novel exopolysaccharide from a marine thermotolerant Bacillus licheniformis. Int Immunopharmacol 6;8-13, 2006 https://doi.org/10.1016/j.intimp.2005.07.004
  16. Kitazawa H, Yamaguchi T, Itoh T: B-cell mitogenic activity of slime products produced from slime-forming, encapsulated Lactococcus lactis ssp. cremoris. J Dairy Sci 75;2946- 2951, 1992 https://doi.org/10.3168/jds.S0022-0302(92)78057-6
  17. Kitazawa H, Yamaguchi T, Miura M, Saito T, Itoh T: B-cell mitogen produced by slime-forming, encapsulated Lactococcus lactis ssp. cremoris isolated from ropy sour milk, viili. J Dairy Sci 76;1514-1519, 1993 https://doi.org/10.3168/jds.S0022-0302(93)77483-4
  18. Kitazawa H, Yamaguchi T, Fujimoto Y, Itoh T: Comparative activity of B-cell mitogen, a phosphopolysaccharide, produced by L. lactis ssp. cremoris on various lymphocytes. Anim Sci Technol 64;605-607, 1993
  19. Kitazawa H, Yamaguchi T, Fujimoto Y, Itoh T: An analysis of mitogenic response of phosphopolysaccharide, a B-cell mitogen produced by Lactococcus lactis ssp. cremoris to spleen cells. Anim Sci Technol 64;807-812, 1993
  20. Kitazawa H, Itoh T, Yamaguchi T: Induction of macrophage cytotoxicity by slime products produced by encapsulated Lactococcus lactis ssp. cremoris. Anim Sci Technol 62;861- 866, 1991
  21. Kitazawa H, Itoh T, Tomioka Y, Mizugaki M, Yamaguchi T: Induction of IFN$\gamma$ and IL-1$\alpha$ production in macrophages stimulated with phosphopolysaccharide produced by Lactococcus lactis ssp. cremoris. Int J Food Microbiol 31;99-106, 1996 https://doi.org/10.1016/0168-1605(96)00968-3
  22. Lee YN, Koo CD: Identification of bacteria isolated from diseased Neungee mushroom, Sarcodon aspratus. J Basic Microbiol 47;31-39, 2007 https://doi.org/10.1002/jobm.200610151
  23. Lee YN, Kim EJ: Characterization of a novel bacterium isolated from diseased Nuengee mushroom, Sarcodon aspratus. 11th Int Sym on the Genetics of Industrial Microorganisms. Melbourne, Australia: Abs. p29, 2010
  24. Ryu JE, Lee YN: Optimizing culture condition of MK1 strain isolated from soft-rotten tissue of Neungee mushroom and its exopolysaccharide. Korean J Microbiol 45;324-331, 2009
  25. McKellar RC, Geest JV, Cui W: Influence of culture and environmental conditions on the composition of exopolysaccharide produced by Agrobacterium radiobacter. Food Hydrocolloides 17;429-437, 2003 https://doi.org/10.1016/S0268-005X(03)00030-4
  26. Dubois M, Gilles K, Hamilton JK, Rebers PA, Smith F: A colormetric method for the determination of sugars. Nature 168;167, 1951
  27. Masuko T, Minami A, Iwasaki N, Majima T, Nishimura SI, Lee YC: Carbohydrate analysis by a phenol-sulfuric and method in microplate format. Anal Biochem 339;69-72, 2005 https://doi.org/10.1016/j.ab.2004.12.001
  28. Ramus J: Alcian blue: A quantitative aqueous assay for algal and sulfated polysaccharides. J Phycol 13;345-348, 1977
  29. Laemmli EK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227;680- 685, 1970 https://doi.org/10.1038/227680a0
  30. Kim JB, Ahn JH: The modification of the silver stain method in sodium dodecyl sulfate-polyamide gels for detecting lipopolysaccharides. J Korean Soc Microbiol 28;193-198, 1993
  31. Hedrick JL, Smith AJ: Size and charge isomer separation and estimation of molecular weights of proteins by disc gel electrophoresis. Arch Biochem Biophys 126;155-164, 1968 https://doi.org/10.1016/0003-9861(68)90569-9
  32. Lee JK, Lee MK, Yun Y-P, Kim Y, Kim JS, Kim YS, Kim K, Han SS, Lee CK: Acemannan purified from Aloe vera induces phenotypic and functional maturation of immature dendritic cells. Int Immunopharmacol 1;1275-1284, 2001 https://doi.org/10.1016/S1567-5769(01)00052-2
  33. Gerelchuluun T, Lee YH, Lee YR, Im SA, Song S, Park JS, Han K, Kim K, Lee CK: Dendritic cells process antigens encapsulated in a biodegradable polymer, poly (D,L-lactide- co-glycolide), via an alternate class I MHC processing pathway. Arch Pharm Res 30;1440-1446, 2007 https://doi.org/10.1007/BF02977369
  34. Lorsbach RB, Murphy WJ, Lowenstein CJ, Snyder SH, Russell SW: Expression of the nitric oxide synthase gene in mouse macrophages activated for tumor cell killing. Molecular basis for the synergy between interferon-gamma and lipopolysaccharide. J Biol Chem 268;1908-1913, 1993
  35. Sherwin C, Fern R: Acute lipopolysaccharide-mediated injury in neonatal white matter glia: role of TNF-alpha, IL- 1beta, and calcium. J Immunol 175;155-161, 2005 https://doi.org/10.4049/jimmunol.175.1.155
  36. Shamash S, Reichert F, Rotshenker S: The cytokine network of Wallerian degeneration: tumor necrosis factor-alpha, interleukin- 1alpha, and interleukin-1beta. J Neurosci 22;3052- 3060, 2002
  37. Im SA, Oh ST, Song S, Kim MR, Kim DS, Woo SS, Jo TH, Park YI, Lee CK: Identification of optimal molecular size of modified Aloe polysaccharides with maximum immunomodulatory activity. Int Immunopharmacol 5;271-279, 2005 https://doi.org/10.1016/j.intimp.2004.09.031
  38. Yamada H, Kiyohara H, Cyong JC, Kojima Y, Kumazawa Y, Otsuka Y: Studies on polysaccharides from Angelica acutiloba. Part 1. Fractionation and biological properties of polysaccharides. Planta Med 50;163-167, 1984 https://doi.org/10.1055/s-2007-969661
  39. Pang ZJ, Zhou M, Chen Y, Wan J: A protein-bound polysaccharide synergistic with lipopolysaccharide induces nitric oxide release and antioxidant enzyme activities in mouse peritoneal macrophages. Am J Chin Med 26;133- 141, 1998 https://doi.org/10.1142/S0192415X9800018X
  40. Okamura K, Suzuki M, Yajima A, Chihara T, Fujiwara A, Fukuda T, Goto S, Ichinohe K, Jimi S, Kasamatsu T, Kawai N, Mizuguchi K, Mori S, Nakano H, Noda K, Sekiba K, Suzuki K, Suzuki T, Takahashi K, Takeuchi K, Takeuchi S, Ogawa N: Clinical evaluation of schizophyllan combined with irradiation in patients with cervical cancer. A randomized controlled study. Cancer 58;865-872, 1986 https://doi.org/10.1002/1097-0142(19860815)58:4<865::AID-CNCR2820580411>3.0.CO;2-S
  41. Sasaki T, Takasuka N: Further study of the structure of lentinan, an anti-tumor polysaccharide from Lentinus edodes. Carbohydr Res 47;99-104, 1976 https://doi.org/10.1016/S0008-6215(00)83552-1
  42. Kitazawa H, Harata T, Uemura J, Saito T, Kaneko T, Itoh T: Phosphate group requirement for mitogenic activation of lymphocytes by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii subsp. bulgaricus. Int J Food Microbiol 40;169-175, 1998 https://doi.org/10.1016/S0168-1605(98)00030-0
  43. Chen NY, Hsu TH, Lin FY, Lai HH, Wu JY: Effects on cytokine- stimulating activities of EPS from Tremella mesenterica with various carbon sources. Food Chem 99;92-97, 2006 https://doi.org/10.1016/j.foodchem.2005.07.023
  44. Chabot S, Yu HL, Leseleuc LD, Cloitier D, Van Calsteren MR, Lessard M, Roy D, Lacroix M, Oth D: Exopolysaccharides from Lactobacillus rhamnosus RW-9595M stimulate TNF, IL-6 and IL-12 in human and mouse cultured immunocompetent cells and IFN-$\gamma$ in mouse splenocytes. Lait 81;683-697, 2001 https://doi.org/10.1051/lait:2001157
  45. Cescutti P, Kallioinen A, Impallomeni G, Toffanin R, Pollesello P, Leisola M, Eerikainen T: Structure of exopolysaccharide produced by Enterobacter amnigenus. Carbohydr Res 340;439-447, 2005 https://doi.org/10.1016/j.carres.2004.12.008
  46. Castro R, Piazzon MC, Zarra I, Leiro J, Noya M, Lamas J: Stimulation of turbot phagocytes by Ulva rigida C. Agardh polysaccharides. Aquaculture 254;9-20, 2006 https://doi.org/10.1016/j.aquaculture.2005.10.012
  47. Adams DO, Hamilton TA: The cell biology of macrophage activation. Annu Rev Immunol 2;283-318, 1984 https://doi.org/10.1146/annurev.iy.02.040184.001435
  48. Fujiwara N, Kobayashi K: Macrophages in inflammation. Curr Drug Targets Inflamm Allergy 4;281-286, 2005 https://doi.org/10.2174/1568010054022024

Cited by

  1. Flow control in paper-based microfluidic device for automatic multistep assays: A focused minireview vol.33, pp.10, 2016, https://doi.org/10.1007/s11814-016-0161-z
  2. E. coli Surface Properties Differ between Stream Water and Sediment Environments vol.7, pp.None, 2010, https://doi.org/10.3389/fmicb.2016.01732
  3. Bioactive Mushroom Polysaccharides: A Review on Monosaccharide Composition, Biosynthesis and Regulation vol.22, pp.6, 2017, https://doi.org/10.3390/molecules22060955
  4. Microbial exopolysaccharide-mediated synthesis and stabilization of metal nanoparticles vol.43, pp.6, 2010, https://doi.org/10.1080/1040841x.2017.1306689
  5. Inflammatory potential of monospecies biofilm matrix components vol.52, pp.7, 2010, https://doi.org/10.1111/iej.13093
  6. Structure Differences of Water Soluble Polysaccharides in Astragalus membranaceus Induced by Origin and Their Bioactivity vol.10, pp.8, 2010, https://doi.org/10.3390/foods10081755