DOI QR코드

DOI QR Code

Involvement of Hepatic Innate Immunity in Alcoholic Liver Disease

  • Byun, Jin-Seok (Graduate School of Medical Science and Engineering, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology) ;
  • Jeong, Won-Il (Graduate School of Medical Science and Engineering, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology)
  • Received : 2010.12.13
  • Accepted : 2010.12.13
  • Published : 2010.12.31

Abstract

Excessive alcohol consumption is one of the critical causative factors leading to alcoholic liver disease (ALD). ALD is characterized by a wide spectrum of liver damage, ranging from simple uncomplicated liver steatosis (fatty liver) to steatohepatitis and liver fibrosis/cirrhosis. It has been believed that the obvious underlying cause for ALD is due to hepatocyte death induced by alcohol itself. However, recent sparkling studies have shown that diverse immune responses contribute to ALD because liver is enriched with numerous immune cells. Especially, a line of evidence has suggested that innate immune cells such as Kupffer cells and natural killer (NK)/NKT cells are significantly involved in the pathogenesis of ALD via production of pro-inflammatory cytokines and other mediators. Indeed, more interestingly, hepatic stellate cells (HSCs), known as a major cell inducing liver steatosis and fibrosis, can be killed by liver NK cells, which could be suppressed by chronic alcohol consumption. In this review, with the view of liver as predominant innate immune organ, we describe the pathogenesis of ALD in which what roles of innate immune cells are and how they are interacting with HSCs.

Keywords

References

  1. Williams R: Global challenges in liver disease. Hepatology 44;521-526, 2006 https://doi.org/10.1002/hep.21347
  2. O'Shea RS, Dasarathy S, McCullough AJ: Practice Guideline Committee of the American Association for the Study of Liver Diseases; Practice Parameters Committee of the American College of Gastroenterology: Alcoholic liver disease. Hepatology 51;307-328, 2010 https://doi.org/10.1002/hep.23258
  3. Jeong WI, Gao B: Innate immunity and alcoholic liver fibrosis. J Gastroenterol Hepatol 23(Suppl 1);S112-S118, 2008 https://doi.org/10.1111/j.1440-1746.2007.05274.x
  4. Purohit V, Gao B, Song BJ: Molecular mechanisms of alcoholic fatty liver. Alcohol Clin Exp Res 33;191-205, 2009 https://doi.org/10.1111/j.1530-0277.2008.00827.x
  5. Purohit V, Gao B, Song BJ: Molecular mechanisms of alcoholic fatty liver. Alcohol Clin Exp Res 33;191-205, 2009 https://doi.org/10.1111/j.1530-0277.2008.00827.x
  6. Gao B, Jeong WI, Tian Z: Liver: An organ with predominant innate immunity. Hepatology 47;729-736, 2008
  7. Racanelli V, Rehermann B: The liver as an immunological organ. Hepatology 43(2 Suppl 1);S54-S62, 2006 https://doi.org/10.1002/hep.21060
  8. Crispe IN: The liver as a lymphoid organ. Annu Rev Immunol 27;147-163, 2009 https://doi.org/10.1146/annurev.immunol.021908.132629
  9. Doherty DG, O'Farrelly C: Innate and adaptive lymphoid cells in the human liver. Immunol Rev 174;5-20, 2000 https://doi.org/10.1034/j.1600-0528.2002.017416.x
  10. Jeong WI, Osei-Hyiaman D, Park O, Liu J, Batkai S, Mukhopadhyay P, Horiguchi N, Harvey-White J, Marsicano G, Lutz B, Gao B, Kunos G: Paracrine activation of hepatic CB1 receptors by stellate cell-derived endocannabinoids mediates alcoholic fatty liver. Cell Metab 7;227-235, 2008 https://doi.org/10.1016/j.cmet.2007.12.007
  11. Jeong WI, Park O, Gao B: Abrogation of the antifibrotic effects of natural killer cells/interferon-gamma contributes to alcohol acceleration of liver fibrosis. Gastroenterology 134;248-258, 2008 https://doi.org/10.1053/j.gastro.2007.09.034
  12. Mandrekar P, Szabo G: Signalling pathways in alcohol-induced liver inflammation. J Hepatol 50;1258-1266, 2009 https://doi.org/10.1016/j.jhep.2009.03.007
  13. Otani K, Korenaga M, Beard MR, Li K, Qian T, Showalter LA, Singh AK, Wang T, Weinman SA: Hepatitis C virus core protein, cytochrome P450 2E1, and alcohol produce combined mitochondrial injury and cytotoxicity in hepatoma cells. Gastroenterology 128;96-107, 2005 https://doi.org/10.1053/j.gastro.2004.10.045
  14. Lieber CS: Alcoholic fatty liver: its pathogenesis and mechanism of progression to inflammation and fibrosis. Alcohol 34;9-19, 2004 https://doi.org/10.1016/j.alcohol.2004.07.008
  15. Crabb DW: Recent developments in alcoholism: the liver. Recent Dev Alcohol 11;207-230, 1993
  16. Fromenty B, Berson A, Pessayre D: Microvesicular steatosis and steatohepatitis: role of mitochondrial dysfunction and lipid peroxidation. J Hepatol 26(Suppl 1);13-22, 1997 https://doi.org/10.1016/S0168-8278(97)82328-8
  17. Yahagi N, Shimano H, Hasty AH, Matsuzaka T, Ide T, Yoshikawa T, Amemiya-Kudo M, Tomita S, Okazaki H, Tamura Y, Iizuka Y, Ohashi K, Osuga J, Harada K, Gotoda T, Nagai R, Ishibashi S, Yamada N: Absence of sterol regulatory element-binding protein-1 (SREBP-1) ameliorates fatty livers but not obesity or insulin resistance in Lep(ob)/ Lep(ob) mice. J Biol Chem 277;19353-19357, 2002 https://doi.org/10.1074/jbc.M201584200
  18. You M, Matsumoto M, Pacold CM, Cho WK, Crabb DW: The role of AMP-activated protein kinase in the action of ethanol in the liver. Gastroenterology 127;1798-1808, 2004 https://doi.org/10.1053/j.gastro.2004.09.049
  19. Costet P, Legendre C, More J, Edgar A, Galtier P, Pineau T: Peroxisome proliferator-activated receptor alpha-isoform deficiency leads to progressive dyslipidemia with sexually dimorphic obesity and steatosis. J Biol Chem 273;29577- 29585, 1998 https://doi.org/10.1074/jbc.273.45.29577
  20. Ip E, Farrell GC, Robertson G, Hall P, Kirsch R, Leclercq I: Central role of PPARalpha-dependent hepatic lipid turnover in dietary steatohepatitis in mice. Hepatology 38;123- 132, 2003
  21. Nagy LE: Recent insights into the role of the innate immune system in the development of alcoholic liver disease. Exp Biol Med (Maywood) 228;882-890, 2003 https://doi.org/10.1177/153537020322800803
  22. Bird GL, Sheron N, Goka AK, Alexander GJ, Williams RS: Increased plasma tumor necrosis factor in severe alcoholic hepatitis. Ann Intern Med 112;917-920, 1990 https://doi.org/10.7326/0003-4819-112-12-917
  23. Lin HZ, Yang SQ, Zeldin G, Diehl AM: Chronic ethanol consumption induces the production of tumor necrosis factor- alpha and related cytokines in liver and adipose tissue. Alcohol Clin Exp Res 22(5 Suppl);231S-237S, 1998 https://doi.org/10.1111/j.1530-0277.1998.tb04008.x
  24. Pritchard MT, McMullen MR, Stavitsky AB, Cohen JI, Lin F, Medof ME, Nagy LE: Differential contributions of C3, C5, and decay-accelerating factor to ethanol-induced fatty liver in mice. Gastroenterology 132;1117-1126, 2007 https://doi.org/10.1053/j.gastro.2007.01.053
  25. Ji C, Deng Q, Kaplowitz N: Role of TNF-alpha in ethanol-induced hyperhomocysteinemia and murine alcoholic liver injury. Hepatology 40;442-451, 2004 https://doi.org/10.1002/hep.20309
  26. Yin M, Wheeler MD, Kono H, Bradford BU, Gallucci RM, Luster MI, Thurman RG: Essential role of tumor necrosis factor alpha in alcohol-induced liver injury in mice. Gastroenterology 117;942-952, 1999 https://doi.org/10.1016/S0016-5085(99)70354-9
  27. Lawler JF Jr, Yin M, Diehl AM, Roberts E, Chatterjee S: Tumor necrosis factor-alpha stimulates the maturation of sterol regulatory element binding protein-1 in human hepatocytes through the action of neutral sphingomyelinase. J Biol Chem 273;5053-5059, 1998 https://doi.org/10.1074/jbc.273.9.5053
  28. Endo M, Masaki T, Seike M, Yoshimatsu H: TNF-alpha induces hepatic steatosis in mice by enhancing gene expression of sterol regulatory element binding protein-1c (SREBP-1c). Exp Biol Med (Maywood) 232;614-621, 2007
  29. Kang L, Sebastian BM, Pritchard MT, Pratt BT, Previs SF, Nagy LE: Chronic ethanol-induced insulin resistance is associated with macrophage infiltration into adipose tissue and altered expression of adipocytokines. Alcohol Clin Exp Res 31;1581-1588, 2007 https://doi.org/10.1111/j.1530-0277.2007.00452.x
  30. El-Assal O, Hong F, Kim WH, Radaeva S, Gao B: IL-6-deficient mice are susceptible to ethanol-induced hepatic steatosis: IL-6 protects against ethanol-induced oxidative stress and mitochondrial permeability transition in the liver. Cell Mol Immunol 1;205-211, 2004
  31. Hong F, Radaeva S, Pan HN, Tian Z, Veech R, Gao B: Interleukin 6 alleviates hepatic steatosis and ischemia/reperfusion injury in mice with fatty liver disease. Hepatology 40;933-941, 2004 https://doi.org/10.1002/hep.20400
  32. Horiguchi N, Wang L, Mukhopadhyay P, Park O, Jeong WI, Lafdil F, Osei-Hyiaman D, Moh A, Fu XY, Pacher P, Kunos G, Gao B: Cell type-dependent pro- and anti-inflammatory role of signal transducer and activator of transcription 3 in alcoholic liver injury. Gastroenterology 134;1148-1158, 2008 https://doi.org/10.1053/j.gastro.2008.01.016
  33. Radaeva S, Wang L, Radaev S, Jeong WI, Park O, Gao B: Retinoic acid signaling sensitizes hepatic stellate cells to NK cell killing via upregulation of NK cell activating ligand RAE1. Am J Physiol Gastrointest Liver Physiol 293;G809- G816, 2007 https://doi.org/10.1152/ajpgi.00212.2007
  34. Jeong WI, Park O, Radaeva S, Gao B: STAT1 inhibits liver fibrosis in mice by inhibiting stellate cell proliferation and stimulating NK cell cytotoxicity. Hepatology 44;1441-1451, 2006 https://doi.org/10.1002/hep.21419
  35. Radaeva S, Sun R, Jaruga B, Nguyen VT, Tian Z, Gao B: Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology 130;435-452, 2006 https://doi.org/10.1053/j.gastro.2005.10.055
  36. McClain CJ, Barve S, Deaciuc I, Kugelmas M, Hill D: Cytokines in alcoholic liver disease. Semin Liver Dis 19; 205-219, 1999 https://doi.org/10.1055/s-2007-1007110
  37. Szabo G: Consequences of alcohol consumption on host defence. Alcohol Alcohol 34;830-841, 1999 https://doi.org/10.1093/alcalc/34.6.830
  38. Akira S, Uematsu S, Takeuchi O: Pathogen recognition and innate immunity. Cell 124;783-801, 2006 https://doi.org/10.1016/j.cell.2006.02.015
  39. Seki E, Brenner DA: Toll-like receptors and adaptor molecules in liver disease: update. Hepatology 48;322-335, 2008 https://doi.org/10.1002/hep.22306
  40. Uesugi T, Froh M, Arteel GE, Bradford BU, Thurman RG: Toll-like receptor 4 is involved in the mechanism of early alcohol-induced liver injury in mice. Hepatology 34;101- 108, 2001 https://doi.org/10.1016/S0168-8278(01)81237-X
  41. Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F: Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 274;10689-10692, 1999 https://doi.org/10.1074/jbc.274.16.10689
  42. Visintin A, Mazzoni A, Spitzer JA, Segal DM: Secreted MD-2 is a large polymeric protein that efficiently confers lipopolysaccharide sensitivity to Toll-like receptor 4. Proc Natl Acad Sci U S A 98;12156-12161, 2001 https://doi.org/10.1073/pnas.211445098
  43. Wright SD, Tobias PS, Ulevitch RJ, Ramos RA: Lipopolysaccharide (LPS) binding protein opsonizes LPS-bearing particles for recognition by a novel receptor on macrophages. J Exp Med 170;1231-1241, 1989 https://doi.org/10.1084/jem.170.4.1231
  44. Uesugi T, Froh M, Arteel GE, Bradford BU, Wheeler MD, Gäbele E, Isayama F, Thurman RG: Role of lipopolysaccharide- binding protein in early alcohol-induced liver injury in mice. J Immunol 168;2963-2969, 2002 https://doi.org/10.4049/jimmunol.168.6.2963
  45. Yin M, Bradford BU, Wheeler MD, Uesugi T, Froh M, Goyert SM, Thurman RG: Reduced early alcohol-induced liver injury in CD14-deficient mice. J Immunol 166;4737- 4742, 2001 https://doi.org/10.4049/jimmunol.166.7.4737
  46. Nanji AA, Khettry U, Sadrzadeh SM: Lactobacillus feeding reduces endotoxemia and severity of experimental alcoholic liver (disease). Proc Soc Exp Biol Med 205;243-247, 1994 https://doi.org/10.3181/00379727-205-43703
  47. Kawai T, Akira S: The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11;373-384, 2010 https://doi.org/10.1038/ni.1863
  48. Hritz I, Mandrekar P, Velayudham A, Catalano D, Dolganiuc A, Kodys K, Kurt-Jones E, Szabo G: The critical role of toll-like receptor (TLR) 4 in alcoholic liver disease is independent of the common TLR adapter MyD88. Hepatology 48;1224-1231, 2008 https://doi.org/10.1002/hep.22470
  49. Bautista AP: Neutrophilic infiltration in alcoholic hepatitis. Alcohol 27;17-21, 2002 https://doi.org/10.1016/S0741-8329(02)00206-9
  50. Kono H, Rusyn I, Yin M, Gabele E, Yamashina S, Dikalova A, Kadiiska MB, Connor HD, Mason RP, Segal BH, Bradford BU, Holland SM, Thurman RG: NADPH oxidase- derived free radicals are key oxidants in alcohol-induced liver disease. J Clin Invest 106;867-872, 2000 https://doi.org/10.1172/JCI9020
  51. Thakur V, Pritchard MT, McMullen MR, Wang Q, Nagy LE: Chronic ethanol feeding increases activation of NADPH oxidase by lipopolysaccharide in rat Kupffer cells: role of increased reactive oxygen in LPS-stimulated ERK1/2 activation and TNF-alpha production. J Leukoc Biol 79;1348- 1356, 2006 https://doi.org/10.1189/jlb.1005613
  52. Wheeler MD, Kono H, Yin M, Rusyn I, Froh M, Connor HD, Mason RP, Samulski RJ, Thurman RG: Delivery of the Cu/Zn-superoxide dismutase gene with adenovirus reduces early alcohol-induced liver injury in rats. Gastroenterology 120;1241-1250, 2001 https://doi.org/10.1053/gast.2001.23253
  53. Dasu MR, Devaraj S, Zhao L, Hwang DH, Jialal I: High glucose induces toll-like receptor expression in human monocytes: mechanism of activation. Diabetes 57;3090-3098, 2008 https://doi.org/10.2337/db08-0564
  54. Park HS, Jung HY, Park EY, Kim J, Lee WJ, Bae YS: Cutting edge: direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kappa B. J Immunol 173;3589-3593, 2004 https://doi.org/10.4049/jimmunol.173.6.3589
  55. Friedman SL: Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 88;125-172, 2008 https://doi.org/10.1152/physrev.00013.2007
  56. Melhem A, Muhanna N, Bishara A, Alvarez CE, Ilan Y, Bishara T, Horani A, Nassar M, Friedman SL, Safadi R: Anti-fibrotic activity of NK cells in experimental liver injury through killing of activated HSC. J Hepatol 45;60-71, 2006 https://doi.org/10.1016/j.jhep.2005.12.025
  57. Taimr P, Higuchi H, Kocova E, Rippe RA, Friedman S, Gores GJ: Activated stellate cells express the TRAIL receptor- 2/death receptor-5 and undergo TRAIL-mediated apoptosis. Hepatology 37;87-95, 2003 https://doi.org/10.1053/jhep.2003.50002
  58. Baroni GS, D'Ambrosio L, Curto P, Casini A, Mancini R, Jezequel AM, Benedetti A: Interferon gamma decreases hepatic stellate cell activation and extracellular matrix deposition in rat liver fibrosis. Hepatology 23;1189-1199, 1996 https://doi.org/10.1002/hep.510230538
  59. Park O, Jeong WI, Wang L, Wang H, Lian ZX, Gershwin ME, Gao B: Diverse roles of invariant natural killer T cells in liver injury and fibrosis induced by carbon tetrachloride. Hepatology 49;1683-1694, 2009 https://doi.org/10.1002/hep.22813
  60. Laso FJ, Madruga JI, Giron JA, Lopez A, Ciudad J, San Miguel JF, Alvarez-Mon M, Orfao A: Decreased natural killer cytotoxic activity in chronic alcoholism is associated with alcohol liver disease but not active ethanol consumption. Hepatology 25;1096-1100, 1997 https://doi.org/10.1002/hep.510250508
  61. Pan HN, Sun R, Jaruga B, Hong F, Kim WH, Gao B: Chronic ethanol consumption inhibits hepatic natural killer cell activity and accelerates murine cytomegalovirus-induced hepatitis. Alcohol Clin Exp Res 30;1615-1623, 2006 https://doi.org/10.1111/j.1530-0277.2006.00194.x
  62. Szabo G, Mandrekar P: A recent perspective on alcohol, immunity, and host defense. Alcohol Clin Exp Res 33;220- 232, 2009 https://doi.org/10.1111/j.1530-0277.2008.00842.x
  63. Szabo G, Mandrekar P, Girouard L, Catalano D: Regulation of human monocyte functions by acute ethanol treatment: decreased tumor necrosis factor-alpha, interleukin-1 beta and elevated interleukin-10, and transforming growth factor-beta production. Alcohol Clin Exp Res 20;900-907, 1996 https://doi.org/10.1111/j.1530-0277.1996.tb05269.x
  64. Jaruga B, Hong F, Kim WH, Sun R, Fan S, Gao B: Chronic alcohol consumption accelerates liver injury in T cell-mediated hepatitis: alcohol disregulation of NF-kappaB and STAT3 signaling pathways. Am J Physiol Gastrointest Liver Physiol 287;G471-G479, 2004 https://doi.org/10.1152/ajpgi.00018.2004
  65. Minagawa M, Deng Q, Liu ZX, Tsukamoto H, Dennert G: Activated natural killer T cells induce liver injury by Fas and tumor necrosis factor-alpha during alcohol consumption. Gastroenterology 126;1387-1399, 2004 https://doi.org/10.1053/j.gastro.2004.01.022

Cited by

  1. Effects of Live Lactobacillus paracasei on Plasma Lipid Concentration in Rats Fed an Ethanol-Containing Diet vol.76, pp.2, 2010, https://doi.org/10.1271/bbb.110390
  2. Lymphocyte subsets in alcoholic liver disease vol.5, pp.2, 2013, https://doi.org/10.4254/wjh.v5.i2.46
  3. Characterization of an alcoholic hepatic steatosis model induced by ethanol and high-fat diet in rats vol.58, pp.3, 2010, https://doi.org/10.1590/s1516-8913201500294
  4. Suppression of Natural Killer Cell Activity by Regulatory NKT10 Cells Aggravates Alcoholic Hepatosteatosis vol.8, pp.None, 2010, https://doi.org/10.3389/fimmu.2017.01414
  5. Lactic Acid Bacteria Isolated from Japanese Fermented Fish (Funa-Sushi) Inhibit Mesangial Proliferative Glomerulonephritis by Alcohol Intake with Stress vol.2018, pp.None, 2010, https://doi.org/10.1155/2018/6491907
  6. Flow cytometric analysis of lymphocyte subsets in alcoholic liver disease vol.33, pp.1, 2010, https://doi.org/10.4103/jms.jms_43_18
  7. KIR2DL2/S2 and KIR2DS5 in alcoholic cirrhotic patients undergoing liver transplantation vol.17, pp.3, 2010, https://doi.org/10.5114/aoms.2019.84410