척수손상 모델 견 표준화를 위한 방사선, 자기공명영상 및 조직 병리 평가

Radiographic, MRI and Histopathologic Assessment to Standardize Canine Spinal Cord Injury Model

  • 성윤상 (경북대학교 수의과대학 수의외과학교실) ;
  • 윤성호 (경북대학교 수의과대학 수의외과학교실) ;
  • 박재순 (경북대학교 수의과대학 수의외과학교실) ;
  • 김희경 (경북대학교 의과대학 진단방사선학교실) ;
  • 장용민 (경북대학교 의과대학 진단방사선학교실) ;
  • 구세광 (대구한의대학교 한의과대학 해부조직학교실) ;
  • 박현정 (제주대학교 수의과대학 방사선학교실) ;
  • 장광호 (경북대학교 수의과대학 수의외과학교실)
  • Seong, Yun-Sang (Department of Surgery, College of Veterinary Medicine, Kyungpook National University) ;
  • Yun, Sung-Ho (Department of Surgery, College of Veterinary Medicine, Kyungpook National University) ;
  • Park, Jai-Soon (Department of Surgery, College of Veterinary Medicine, Kyungpook National University) ;
  • Kim, Hee-Kyung (Department of Diagnostic Radiology and Molecular Medicine, Kyungpook National University) ;
  • Chang, Yong-Min (Department of Diagnostic Radiology and Molecular Medicine, Kyungpook National University) ;
  • Ku, Sae-Kwang (Department of Anatomy and Histology, College of Oriental Medicine, Daegu Haany University) ;
  • Park, Hyun-Jeong (Department of Veterinary Radiology, College of Veterinary Medicine, Jeju National University) ;
  • Jang, Kwang-Ho (Department of Surgery, College of Veterinary Medicine, Kyungpook National University)
  • 심사 : 2010.10.11
  • 발행 : 2010.10.30

초록

대부분 척수손상 모델에서의 척수 손상 정도 평가는 자기공명 영상 등을 통한 유발 후 평가를 실시하고 있으며, 유발 전 평가를 위해 풍선 카테타에 주입된 공기 양을 기준한 예가 있으나 종 특이성과 개체 차이를 고려하지 못하는 단점이 있다. 이러한 단점을 극복한 척수손상 기준모델을 제시하기 위해 본 실험을 실시하였다. 방사선 평가를 통해 요추 1 번 척수강 높이가 8 mm로 측정된 임상적으로 건강한 비글견 8 마리를 풍선카테타의 직경과 척수 압박시간을 기준으로 4개 군 (4 mm/3 시간, 4 mm/6 시간, 4 mm/12 시간 그리고 6 mm/3 시간)으로 구분하였다. 손상 정도는 행동 관찰, 자기공명영상 해석, 체성감각유발전위평가 그리고 병리조직검사를 실시하여 평가하였다. 실험결과, 행동평가와 체성감각유발전위평가는 단지 손상 유발 여부만 지시할 뿐 정도 평가에는 유용하지 못하였다. 자기공명영상 평가에서 척수손상 부위는 단시간반전회복영상과 T2강조영상에서 불균질한 고신호강도 영역으로 관찰되었다. 고신호강도 영역은 삽입된 풍선 직경과 압박시간 증가에 따라 보다 확장되어 관찰되었으며, 이러한 소견은 공포화 등의 손상부위 증가와 카스파제-3 및 PARP 면역반응 세포의 수적 증가로 나타난 병리조직검사 결과와 일치하였다. 이러한 결과로 미루어 정형화된 척수손상 모델 유발을 위한 척수강 직경과 풍선카테타 직경 그리고 압박시간의 변수 이용과 손상 정도 평가를 위해 자기공명영상은 매우 유용할 것으로 판단된다.

Previous studies could not offer available guideline to decide size of balloon and grade of injury before induction of spinal cord injury (SCI) because grade of SCI was assessed after inserting a catheter and each experimental animal were different in body size and weight as well as in species. This study was performed to provide guideline for standardized SCI model. Eight healthy adult beagle dogs that had 8 mm of spinal canal height were assigned to four groups according to the diameter of balloon and compression time: 4 mm/3hrs, 4 mm/6hrs, 4 mm/12hrs and 6 mm/3hrs group. Radiography was performed to standardize between experimental animal and balloon before selecting balloon diameter to induce SCI. Behaviors outcomes, somatosensory evoked potentials (SEPs), magnetic resonance imaging (MRI) and histopathological examination were evaluated. Behaviors outcomes and SEPs were not available to assess grade of SCI and those only indicate SCI. The damaged area was revealed clear hyperintensity on STIR image and T2WI after induction of SCI. The hyperintense area on MRI was cranially and caudally expanded with increasing of the diameter of balloon or the compression time. Well corresponded to expanding of hyperintense area on MRI, the damaged region and the numbers of caspase-3 and PARP immunoreactive cells were increased on histopathological findings. Therefore, these results will be considered fundamental data to induce standardized SCI model in experimental animal that has various weight and size.

키워드

참고문헌

  1. Bao F, John SM, Chen Y, Mathison RD, Weaver LC. The tripeptide phenylalanine-(D) glutamate-(D) glycine modulates leukocyte infiltration and oxidative damage in rat injured spinal cord. Neuroscience 2006; 140: 1011-1022. https://doi.org/10.1016/j.neuroscience.2006.02.061
  2. Barrett KL, Willingham JM, Garvin JA, Willingham MC. Advences in cytochemical methods for detection of apoptosis. J Histochem Cytochem 2001; 49: 821-832. https://doi.org/10.1177/002215540104900703
  3. Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 1995; 12: 1-21. https://doi.org/10.1089/neu.1995.12.1
  4. Basso DM, Beattie MS, Bresnahan JC. Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transaction. Exp Neurol 1996; 136: 244-256.
  5. Bruce JC, Oatway MA, Weaver LC. Chronic pain after clipcompression injury of the rat spinal cord. Exp Neurol 2002; 178, 33-48. https://doi.org/10.1006/exnr.2002.8026
  6. Carlson GD, Gorden CD, Nakazawa S, Wada E, Smith JS, LaManna JC. Sustained spinal cord compression: part II: effect of methylprednisolone on regional blood flow and recovery of somatosensory evoked potentials. J Bone Joint Surg Am 2003; 85: 95-101. https://doi.org/10.1302/0301-620X.85B1.13389
  7. Carlson GD, Gorden CD, Oliff HS, Pillai JJ, LaManna JC. Sustained spinal cord compression: part I: time-dependent effect on long-term pathophysiology. J Bone Joint Surg Am 2003; 85: 86-94. https://doi.org/10.2106/00004623-200301000-00014
  8. Fukuda S, Nakamura T, Kishigami Y, Endo K, Azuma T, Fujikawa T, Tsutsumi S, Shimizu Y. New canine spinal cord injury model free from laminectomy. Brain Res Brain Res Protoc 2005; 14: 171-180. https://doi.org/10.1016/j.brainresprot.2005.01.001
  9. Lee JH, Choi CB, Chung DJ, Kang EH, Chang HS, Hwang SH, Han H, Choe BY, Sur JH, Lee SY, Kim HY. Development of an improved canine model of percutaneous spinal cord compression injury by balloon catheter. J Neurosci Methods 2008; 167: 310-316 https://doi.org/10.1016/j.jneumeth.2007.07.020
  10. Lim JH, Jung CS, Byeon YE, Kim WH, Yoon JH, Kang KS, Kweon OK. Establishment of a canine spinal cord injury model induced by epidural balloon compression. J Vet Sci 2007; 8, 89-94. https://doi.org/10.4142/jvs.2007.8.1.89
  11. Nunez G, Benedict MA, Hu Y, Inohara N. Caspases: the proteases of the apoptotic pathway. Oncogene 1998; 17: 3237-3245. https://doi.org/10.1038/sj.onc.1202581
  12. Olby NJ, De Risio L, Munana KR, Wosar MA, Skeen TM, Sharp NJ, Keene BW. Development of a functional scoring system in dogs with acute spinal cord injuries. Am J Vet Res 2001; 62: 1624-1628. https://doi.org/10.2460/ajvr.2001.62.1624
  13. Oro JJ, Gibbs SR, Haghighi SS. Balloon device for experimental graded spinal cord compression in the rat. Spinal Disorders 1999; 12: 257-261
  14. Poncelet L, Michaux C, Blligand M. Somatosensory potentials in dogs with naturally acquired thoracolumbar spinal cord disease. Am J Vet Res 1993; 54: 1935-1941.
  15. Poncelet L, Michaux C, Blligand M. Study of spinal cord evoked injury potential by use of computer modeling and in dogs with naturally acquired thoracolumbar spinal cord compression. Am J Vet Res 1998; 59: 300-306.
  16. Purdy PD, Duong RT, white 3rd CL, Baer DL, Reichard RR, Pride GL Jr, Adams C, Miller S, Hladik CL, Yetkin Z. Percutaneous translumbar spinal cord compression injury in a dog model that uses angioplasty balloons: MR imaging and histopathologic findings. Am J Neuroradiol 2003; 24: 177-184.
  17. Purdy PD, white 3rd CL, Baer DL, Frawley WH, Reichard RR, Pride GL Jr, Adams C, Miller S, Hladik CL, Yetkin Z. Percutaneous translumbar spinal cord compression injury in dogs from an angioplasty balloon: MR and histopathologic changes with balloon size and compression times. Am J Neuroradiol 2004; 25: 1435-1442.
  18. Shi SR, Chaiwun B, Young L, Cote RJ, Taylor CR. Antigen retrieval technique citrate buffer or urea solution for immunohistochemical demonstration of androgen receptor in formalinfixed paraffin sections. J Histochem Cytochem 1993; 41: 1599-1604. https://doi.org/10.1177/41.11.7691930
  19. Shores A, Redding RW, Knecht CD. Spinal-evoked potentials in dogs with acute compressive thoracolumbar spinal cord disease. Am J Vet Res 1987; 48: 1525-1530.
  20. Smulson ME, Pang D, Jung M, Dimtchev A, Chasovskikh S, Spoonde A, Simbulan-Rosenthal C, Rosenthal D, Yakovlev A, Dritschilo A. Irreversible binding of poly-(ADP) ribose polymerase cleavage product to DNA ends revealed by atomic force microscopy: possible role in apoptosis. Cancer Res 1998; 58: 3495-3498.
  21. Smyth PG, Berman SA. Markers of apoptosis: methods for elucidating the mechanism of apoptotic cell death from the nervous system. Biotechniques 2002; 32: 648-665.
  22. Takenouchi T, Setoguchi T, Yone K, Komiya S. Expression of apoptosis signal-regulating kinase 1 in mouse spinal cord under chronic mechanical compression: possible involvement of the stress-activated mitogen activated protein kinase pathways in spinal cord cell apoptosis. Spine 2008; 33: 1943-1950. https://doi.org/10.1097/BRS.0b013e3181822ed7
  23. Trucco C, Oliver FJ, de Murcia G, Ménissier-de Murcia J. DNA repair defect in poly (ADP-ribose) polymerase-deficient cell lines. Nucleic Acids Res 1998; 26: 2644-2649. https://doi.org/10.1093/nar/26.11.2644
  24. Vanicky I, Urdzikova L, Saganova K, Cizkova D, Galik J. A simple and reproducible model of spinal cord injury induced by epidural balloon inflation in the rat. J Neurotrauma 2001; 18: 1399-1407 https://doi.org/10.1089/08977150152725687
  25. Wu XH, Yang SH, Duan DY, Cheng HH, Bao YT, Zhang Y. Anti-apoptotic effect of insulin in the control of cell death and neurologic deficit after acute spinal cord injury in rats. J Neurotrauma 2007; 24: 1502-1512. https://doi.org/10.1089/neu.2006.0228