The Initiation of Slip on Frictional Fractures

마찰 전단면의 전단거동과 에너지방출률

  • 박치현 (Schnabel Engineering, Geostructural Group 엔지니어)
  • Received : 2010.09.13
  • Accepted : 2010.10.22
  • Published : 2010.10.31

Abstract

Slip along a frictional fracture can be approached as initiation and propagation of a mode II crack along its own plane. Fracture mechanics theories predict that under pure mode II loading initiation will occur when the energy release rate of the fracture attains a critical value ($G_{IIC}$), which is generally taken as a material property. For the past few years the rock mechanics group at Purdue University has investigated experimentally the dependence of $G_{IIC}$ on normal stress and on the frictional characteristics of a fracture. A number of experiments has been conducted first on acrylic, a material that, using photoelastic methods, allows visualization of the stress field ahead of the fracture tip; and later on gypsum, a rock model material with relatively low unconfined compression strength. The experimental investigation has been expanded to include other frictional materials with higher unconfined compression strength. Direct shear tests have been conducted on specimens made with cement paste. New observations together with previous experiments indicate that $G_{IIC}$ can only be considered a material property when the peak friction angle of the discontinuity is similar to the residual friction angle; otherwise the critical energy release rate increases with normal stress.

닫힌 균열을 따라 발생하는 전단거동을 Mode II 크랙의 시작과 진행으로 묘사할 수 있다. 파괴역학 이론에서는 순수 Mode II 재하에서 일반적으로 고유물성으로 인식되는 에너지 방출율(GII, Engergy Release Rate)이 한계점($G_{IIC}$)에 도달했을 때 전단거동이 시작된다고 예측한다. 지난 몇 년간 퍼듀대학의 암반공학그룹은 한계 에너지 방출률($G_{IIC}$)의 구속응력(normal stress)과 닫힌 균열의 거칠기에 대한 관계를 실험적으로 접근해왔다. 먼저 많은 실험들이 아크릴 재료를 대상으로 실행되었는데, 이는 광탄성(Photoelastic) 방법을 이용한 균열 끝(fracture tip)의 응력 집중 영역을 시각화하는 것을 가능케 해 주었다. 그 다음 실험 연구는 비교적 낮은 압축강도를 지닌 균질한 석고에 시행되었고, 최근에는 더 높은 압축강도를 지닌 재료를 대상으로 실험연구를 수행하였다. 그 예로 시멘트로 만든 시료 불록에 직접 전단 실험을 하였는데, 이전의 실험들과 마찬가지로 불연속면의 최대마찰각(Peak Friction Angle)이 잔류 마찰각(Residual Friction angle)과 비슷할 때만이 $G_{IIC}$가 재료의 고유물성으로 간주 될 수 있다는 점을 확인할 수 있었다. 그렇지 않은 경우에 한계 에너지 방출율($G_{IIC}$)은 구속응력과 함께 증가한다.

Keywords

References

  1. Pollard, D.D., S. Zeller, J. Olson, and A. Thomas, 1999. Understanding the process of jointing in brittle rock masses, In proceedings of 31st US Symposium on Rock Mechanics, A.A. Balkema, Rotterdam, 447-454.
  2. Olson, E., and DD. Pollard, 1989. Inferring paleostresses from natural fracture patterns: A new method. Geology. 17:345-348. https://doi.org/10.1130/0091-7613(1989)017<0345:IPFNFP>2.3.CO;2
  3. Marone, C. 1997. On the Rate of Frictional Healing and the Constitutive Law for Time-and Slip-Dependent Friction. International Journal of Rock Mechanics and Mining Sciences. 34:5-14.
  4. Dieterich, J.H. 1979. Modeling of rock friction I: Experimental results and constitutive equations. Journal of Geophsical Research. 84: 2161-2168. https://doi.org/10.1029/JB084iB05p02161
  5. Ruina, A. 1983. Slip instability and state variable friction laws. Journal of Geophysical Research. 88: 10359-10370. https://doi.org/10.1029/JB088iB12p10359
  6. Dieterich, J.H. 1978. Time-dependent friction and the mechanics of stick-slip. Pure Applied Geophysics. 116: 790-805. https://doi.org/10.1007/BF00876539
  7. Okubo, P.G, and J.H. Dieterich, 1984. Effects of Physical Fault Properties on Frictional Instabilities Produced on simulated Faults. Journal of Geophysical Research. 89 (B7): 5817-5827. https://doi.org/10.1029/JB089iB07p05817
  8. Backers, T., O. Stephansson, and E. Rybacki, 2002. Rock Fracture Toughness Testing in Mode II Punch Through Shear Test. International Journal of Rock Mechanics and Mining Sciences. 39:755-769. https://doi.org/10.1016/S1365-1609(02)00066-7
  9. Mutlu, O. and A. Bobet, 2005. A fracture mechanics approach to slip along frictional discontinuities. In Proceedings of 40th U. S. Rock Mechanics Symposium, Alaska Rocks 2005, Alaska, 25 - 29 June 2005, CD-ROM, eds. Gang Chen et al, ARMA/USRMS 05-685.
  10. Mutlu, O. and A. Bobet, 2005, Slip initiation on frictional fractures. Engineering Fracture Mechanics 72: 729-747. https://doi.org/10.1016/j.engfracmech.2004.06.003
  11. Mutlu, O. and A. Bobet, 2006, Slip propagation along frictional discontinuities. International Journal of Rock mechanics and Mining Sciences Vol. 43, pp. 860-876. https://doi.org/10.1016/j.ijrmms.2005.11.012
  12. Scholz, C.H., P. Molnar, and T. Johnson, 1972. Detailed Studies of Frictional Sliding of Granite and Implications for the Earthquake Mechanism. J. Geophys. Res. 84:6392-6406.
  13. Byerlee, J.D. 1970. Static and Kinetic Friction of Granite at High Normal Stress, International Journal of Rock mechanics. 7:577-582. https://doi.org/10.1016/0148-9062(70)90018-5
  14. Wong, T.F. 1986. Shear Fracture energy of Westerly Granite from Post-Failure Behavior. Journal of Geophysical Research. 87(B2): 990-1000..
  15. Palmer, A.C. and J.R. Rice, 1973. The Growth of Slip Surfaces in the Progressive Failure of Over-consolidated Clay. Proceedings of the Royal Society of London, A series. 332: 527-548. https://doi.org/10.1098/rspa.1973.0040