DOI QR코드

DOI QR Code

Characterization of an Amylase-sensitive Bacteriocin DF01 Produced by Lactobacillus brevis DF01 Isolated from Dongchimi, Korean Fermented Vegetable

  • Kang, Tae-Kyu (Nong Shim CO., LTD International Products Developmemnt Team) ;
  • Kim, Wang-June (Department of Food Science and Technology, Dongguk University)
  • Received : 2009.08.08
  • Accepted : 2010.10.16
  • Published : 2010.10.31

Abstract

A DF01 strain that inhibits tyramine-producing Lactobacillus curvatus KFRI 166 was isolated from Dongchimi, a traditional Korean fermented vegetable, and identified as Lactobacillus brevis by biochemical analysis and reverse transcriptase sequencing of 16S rRNA. The antimicrobial compound produced by L. brevis DF01 was secreted at a maximum level of 640 AU/mL in late exponential phase in MRS broth, and its activity remained constant during stationary phase. The activity of bacteriocin DF01 was totally inactivated by $\alpha$-chymotrypsin, pronase E, proteinase K, trypsin, and $\alpha$-amylase, but not by catalase, which indicates the compound was glycoprotein in nature. The activity was not affected by pH changes ranging from 2 to 12 or heat treatment (60, 80, and $100^{\circ}C$ for 30 min), but was reduced after autoclaving. Bacteriocin DF01 had bacteriolytic activity and a molecular weight of approximately 8.2 kDa, as shown by tricine-SDS-PAGE analysis. Therefore, bacteriocin DF01 can be used in the manufacture of fermented meat products due to its inhibition of tyramine-producing L. curvatus and non-inhibition of L. sake, which is used as a starter culture for meat fermentation.

Keywords

References

  1. Ann, Y. G. (2001) Dongchimi fermentation for drinks. Kor. J. Food Nutr. 14, 46-51.
  2. Bhunia, A. K., Johnson, M. C., and Ray, B. (1987) Direct detection of an antimicrobial peptide of Pediococcus acidilactici in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J. Ind. Microbiol. 2, 319-322. https://doi.org/10.1007/BF01569434
  3. Bierbaum, G. and Sahl, H. G. (1987) Autolytic system of Staphylococcus simulans 22: influence of cationic peptides on activity of N-acetylmuramoyl-L-alanine amidase. J. Bacteriol. 169, 5452-5458.
  4. Bover-Cid, S., Hugas, M., Izquierdo-Pulido, M., and Vidal- Carou M. C. (2001) Amino acid-decarboxylase activity of bacteria isolated from fermented pork sausages. Int. J. Food Microbiol. 66, 185-189. https://doi.org/10.1016/S0168-1605(00)00526-2
  5. Bover-Cid, S., Izquierdo-Pulido, M., and Vidal-Carou, M. C. (2000) Influence of hygienic quality of raw materials on biogenic amine production during ripening and storage of dry fermented sausages. J. Food Prot. 63, 1544-1550.
  6. Christensen, J. E., Dudley, E. G., Pederson, J. A., and Steele, J. L. (1999) Peptidases and amino acid catabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 76, 217-246. https://doi.org/10.1023/A:1002001919720
  7. Cleveland, J., Montville, T. J., Nes, I. F., and Chikindas, M. L. (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71, 1-20. https://doi.org/10.1016/S0168-1605(01)00560-8
  8. Eckner, K. F. (1992) Bacteriocins and food application. Dairy Food Environ. Sanitation 12, 204-209.
  9. Gianotti, V., Chiuminatto, U., Mazzucco, E., Gosetti, F., Bottaro, M., Frascarolo, P., and Gennaro, M. C. (2008) A new hydrophilic interaction liquid chromatography tandem mass spectrometry method for the simultaneous determination of seven biogenic amines in cheese. J. Chromatogr. A. 1185, 296-300. https://doi.org/10.1016/j.chroma.2008.02.038
  10. Hernandez, D., Cardell, E., and Zarate, V. (2005) Antimicrobial activity of lactic acid bacteria isolated from Tenerife cheese: initial characterization of plantaricin TF711, a bacteriocin- like substance produced by Lactobacillus plantarum TF711. J. Appl. Microbiol. 99, 77-84. https://doi.org/10.1111/j.1365-2672.2005.02576.x
  11. Jack, R. W., Tagg, J. R., and Ray, B. (1995) Bacteriocins of gram-positive bacteria. Microbiol. Rev. 59, 171-200.
  12. Jimenez-Diaz R., Ruiz-Barba, J. L., Cathcart, D.,P., Holo, H., Nes, I.,F., Sletten K. H. and Warner, P. J. (1995) Purification and partial amino acid sequence of plantaricin S, a bacteriocin produced by Lactobacillus plantarum LPCO10, the activity of which depends on the complementary action of two peptides. Appl. Environ. Microbiol. 61, 4459-4463.
  13. Jimenez-Diaz, R., Rios-Sanchez, R. M., Desmazeaud, M., Ruiz-Barba J. L., and Piard, J. C. (1993) Plantaricins S and T, two new bacteriocins produced by Lactobacillus plantarum LPCO10 isolated from a green olive fermentation. Appl. Environ. Microbiol. 59, 1416-1424.
  14. Kalae, P., Spieka, J., Koizek, M., and Pelikano, T. (2000) The effects of lactic acid bacteria inoculants on biogenic amines formation in sauerkraut. Food Chem. 70, 355-359. https://doi.org/10.1016/S0308-8146(00)00103-5
  15. Kim, J. H. and Kim, J. I. (1999) Identification and fermentation characteristics of lactic acid bacteria isolated from Dongchimi as starter for radish juice. Kor. J. Microbiol. 35, 307-314.
  16. Kim, W. J., Hong, S. S., Cha, S. K., and Koo, Y. J. (1993) Use of bacteriocinogenic Pediococcus acidilactici in sausage fermentation. J. Microbiol. Biotechnol. 3, 199-203.
  17. Klaenhammer, T. R. (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12, 39-85. https://doi.org/10.1111/j.1574-6976.1993.tb00012.x
  18. Ko, E. J., Hur, S. S., and Choi, Y. H. (1994) Development of ion beverage from Dongchimi product by reverse osmosis concentration. Kor.J. Food Sci. Technol. 26, 573-578.
  19. Kong, C. S., Lee, S. H., Seo, J. O., Park, K. Y., and Rhee, S. H. (2006) Anti-adipogenic effects of dongchimi Nano juice in mouse 3T3-L1 adipocytes. J. Food Sci. Nutr. 11, 285-288. https://doi.org/10.3746/jfn.2006.11.4.285
  20. Latorre-Moratalla, M. L., Veciana-NoguEs, T., Bover-Cid, S., Garriga, M., Aymerich, T., Zanardi, E., Ianieri, A., Fraqueza, M. J., Patarata, L., Drosinos, E. H., LaukovA, A., Talon, R., and Vidal-Carou, M. C. (2008) Biogenic amines in traditional fermented sausages produced in selected European countries. Food Chem. 107, 912-921. https://doi.org/10.1016/j.foodchem.2007.08.046
  21. Leal-SAnchez, M. V., JimEnez-DIaz, R., Maldonado-BarragAn, A., Garrido-FernAndez, A., and Ruiz-Barba, J. L. (2002) Optimization of bacteriocin production by batch fermentation of Lactobacillus plantarum LPCO10. Appl. Environ. Microbiol. 68, 4465-4471. https://doi.org/10.1128/AEM.68.9.4465-4471.2002
  22. Lewus, C. B., Sun, S., and Montville, T. J. (1992) Production of an amylase-sensitive bacteriocin by an atypical Leuconostoc paramesenteroides strain. Appl. Environ. Microbiol. 58, 143-149.
  23. Mathot, A. G., Beliard, E., and Thuault, D. (2003) Streptococcus thermophilus 580 produces a bacteriocin potentially suitable for inhibition of Clostridium tyrobutyricum in hard cheese. J. Dairy Sci. 86, 3068-3074. https://doi.org/10.3168/jds.S0022-0302(03)73906-X
  24. Nes, I. F., Diep, D. B., HAvarstein, L. S., Brurberg, M. B., Eijsink, V., and Holo, H. (1996) Biosynthesis of bacteriocins in lactic acid bacteria. Antonie van Leeuwenhoek 70, 113-128. https://doi.org/10.1007/BF00395929
  25. Riley, M. A. and Wertz, J. E. (2002) Bacteriocins: evolution, ecology, and application. Annu. Rev. Microbiol. 56, 117-137. https://doi.org/10.1146/annurev.micro.56.012302.161024
  26. Roig-Sagues, A. and Eerola, S. (1997) Biogenic amines in meat inoculated with Lactobacillus sake starter strains and an amine-positive lactic acid bacterium. Eur. Food Res. Technol. 205, 227-231.
  27. Rojo-Bezares, B., SAenz, Y., Navarro, L., Zarazaga, M., Ruiz-Larrea, F., and Torres, C. (2007) Coculture-inducible bacteriocin activity of Lactobacillus plantarum strain J23 isolated from grape must. Food Microbiol. 24, 482-491. https://doi.org/10.1016/j.fm.2006.09.003
  28. Rokka, M., Eerola, S., Smolander, M., Alakomi, H. L., and Ahvenainen, R. (2004) Monitoring of the quality of modified atmosphere packaged broiler chicken cuts stored in different temperature conditions B. Biogenic amines as quality indicating metabolites. Food Control 15, 601-607. https://doi.org/10.1016/j.foodcont.2003.10.002
  29. Saccani, G., Tanzi, E., Pastore, P., Cavalli, S., and Rey, M. (2005) Determination of biogenic amines in fresh and processed meat by suppressed ion chromatography-mass spectrometry using a cation-exchange column. J. Chromatogr. A. 1082, 43-50. https://doi.org/10.1016/j.chroma.2005.05.030
  30. Salminen, S., von Wright, A., and Ouwehand, A. C. (2004) Lactic acid bacteria: Microbiological and functional aspects. Marcel Dekker, Inc., New York, pp. 375-395.
  31. SchAgger, H. (2006) Tricine-SDS-PAGE. Nat. Protoc. 1, 16-22. https://doi.org/10.1038/nprot.2006.4
  32. Schillinger, U. and Lücke, F. K. (1989) Antibacterial activity of Lactobacillus sake isolated from meat. Appl. Environ. Microbiol. 55, 1901-1906.
  33. Straub, B. W., Kicherer, M., Schilcher S. M., and Hammes, W. P. (1995) The formation of biogenic amines by fermentation organisms. Z. Lebensm. Unters. Forsch. 201, 79-82. https://doi.org/10.1007/BF01193205
  34. Ten Brink, B., Damink, C., Joosten H. M., and Huis int Veld, J. H. (1990) Occurrence and formation of biologically active amines in foods. Int. J. Food Microbiol. 11, 73-84. https://doi.org/10.1016/0168-1605(90)90040-C

Cited by

  1. Antimicrobial Effect of Bacteriocin KU24 Produced byLactococcus lactisKU24 against Methicillin-ResistantStaphylococcus aureus vol.78, pp.3, 2013, https://doi.org/10.1111/1750-3841.12053
  2. Effect of bacteriocin-producingPediococcus acidilacticiK10 on beer fermentation vol.122, pp.3, 2016, https://doi.org/10.1002/jib.339
  3. Antilisterial and amylase-sensitive bacteriocin producing Enterococcus faecium SH01 from Mukeunji, a Korean over-ripened kimchi vol.23, pp.4, 2014, https://doi.org/10.1007/s10068-014-0161-x
  4. Inhibitory effects of antagonistic compounds produced from Lactobacillus brevis MLK27 on adhesion of Listeria monocytogenes KCTC3569 to HT-29 cells vol.21, pp.3, 2012, https://doi.org/10.1007/s10068-012-0101-6
  5. Lactobacillus brevis Strains from Fermented Aloe vera Survive Gastroduodenal Environment and Suppress Common Food Borne Enteropathogens vol.9, pp.3, 2014, https://doi.org/10.1371/journal.pone.0090866
  6. PCR-DGGE analysis of population dynamics of lactic acid bacteria in kimchi by addition of bacteriocins vol.25, pp.4, 2016, https://doi.org/10.1007/s10068-016-0180-x
  7. Isolation and characterization of bacteriocin-producing Pediococcus acidilactici HW01 from malt and its potential to control beer spoilage lactic acid bacteria vol.80, 2017, https://doi.org/10.1016/j.foodcont.2017.04.022
  8. Nitroso-hemoglobin Increased the Color Stability and Inhibited the Pathogenic Bacteria in a Minced Beef Model: A Combined Low-field NMR Study vol.39, pp.5, 2010, https://doi.org/10.5851/kosfa.2019.e40
  9. Rapid detection of beer-spoilage lactic acid bacteria: Modified hop-gradient agar with ethanol method vol.52, pp.3, 2010, https://doi.org/10.9721/kjfst.2020.52.3.296