강제대류시 계절에 따른 KURT 내 열전달계수 결정에 관한 연구

A Study on the Determination of the Seasonal Heat Transfer Coefficient in KURT Under Forced Convection

  • 투고 : 2010.07.15
  • 심사 : 2010.09.03
  • 발행 : 2010.09.30

초록

고준위 방사성 폐기물 처분장의 경우 폐기물의 방사성 붕괴에 의해 열이 발생되며, 암반을 통한 열전달에 의해 처분장 주변 환경이 변화됨으로써 처분장의 안전성에 영향을 미칠 수 있다. 그러므로 지하 처분장 대기의 열전달계수를 결정하는 것은 매우 중요하다. 이에 본 연구에서는 Korea Atomic Energy Research Institute Underground Research Tunnel (KURT)에서 내부 환경 인자들의 측정을 통해 강제대류시 열전달계수를 산정하였다. 실험을 위해 KURT 내 히터구간의 막장 벽면에는 길이 2 m, 용량 5 kw의 히터를 삽입하여 암반 내부를 $90^{\circ}C$로 가열하였고, 외부와 연결된 급기용 팬에 의해 신선한 공기를 공급하였다. 연구결과, 외부공기 공급 후 히터구간 대기의 기류속도는 평균 0.81 m/s로 측정되었고 레이놀즈수는 약 310,000~340,000의 값을 나타냈다. 그리고 강제대류조건에서 히터구간 내 계절별 열전달계수는 각각 여름철 $7.68\;W/m^2{\cdot}K$와 겨울철 $7.24\;W/m^2{\cdot}K$의 수치를 나타냈다.

In a high-level waste (HLW) repository, heat is generated by the radioactive decay of the waste. This can affect the safety of the repository because the surrounding environment can be changed by the heat transfer through the rock. Thus, it is important to determine the heat transfer coefficient of the atmosphere in the underground repository. In this study, the heat transfer coefficient was estimated by measuring the indoor environmental factors in the Korea Atomic Energy Research Institute Underground Research Tunnel (KURT) under forced convection. For the experiment, a heater of 5 kw capacity, 2 meters long, was inserted through the tunnel wall in the heating section of KURT in order to heat up the inside of the rock to $90^{\circ}C$, and fresh air was provided by an air supply fan connected to the outside of the tunnel. The results showed that the average air velocity in the heating section after the provision of the air from outside of the tunnel was 0.81 m/s with the Reynolds number of 310,000~340,000. The seasonal heat transfer coefficient in the heating section under forced convection was $7.68\;W/m^2{\cdot}K$ in the summer and $7.24\;W/m^2{\cdot}K$ in the winter.

키워드

참고문헌

  1. 김진, 권상기, 한국형 방사성 폐기물 처분장을 위한 환기시스템 전략, Journal of the Korean Radioactive Waste Society, vol. 3(2), pp.135-148 (2005).
  2. Roald Akberov, Darrell W.Pepper, Yitung Chen, Modeling convective heat transfer around a waste cask stored in the YUCCA mountain repository, The 6th ASME-JSME Thermal engineering Joint Conference, Hawaii, U.S.A. (2003).
  3. Yun Lee, Myoung-Sung Choi, Seong-Tae Yi, Jin-Keun Kim, Experimental study on the convective heat transfer coefficient of early-age concrete, Cement & Concrete Composites, vol. 31. pp.60-71 (2009). https://doi.org/10.1016/j.cemconcomp.2008.09.009
  4. 윤찬훈, 권상기, 김진, KURT 내 열전달계수 결정에 관한 실험적 연구, Journal of Korean Society for Rock Mechanics, Tunnel & Underground space, 19(6), pp.507-516 (2009).
  5. 조원진, 권상기, 박정화, 최종원, 2007, 한국원자력연구원 지하처분연구시설, Journal of the Korean Radioactive Waste Society, vol. 5(3), pp.239-255 (2007).
  6. Malcolm J. McPherson, Subsurface Ventilation and Environmental Engineering, Chapman & Hall, pp. 537-540 (1993).
  7. Nunner, W., Z. ver. Deut. lng., Forshungsh., Vol 255, 1, 1956, or Convective Heat and Mass Transfer, W.M. Kays, McGraw-Hill Book Company, p.197(1966).
  8. Crane Company, Flow of fluids through valves, fittings, and pipe., Technical p.410 (1988).