DOI QR코드

DOI QR Code

Renal Tubular Acidosis

신세뇨관 산증

  • Park, Hye-Won (Department of Pediatrics, Seoul National University Bundang Hospital)
  • 박혜원 (분당서울대학교병원 소아청소년과)
  • Received : 2010.09.20
  • Accepted : 2010.09.29
  • Published : 2010.10.31

Abstract

Renal tubular acidosis (RTA) is a metabolic acidosis due to impaired excretion of hydrogen ion, or reabsorption of bicarbonate, or both by the kidney. These renal tubular abnormalities can occur as an inherited disease or can result from other disorders or toxins that affect the renal tubules. Disorders of bicarbonate reclamation by the proximal tubule are classified as proximal RTA, whereas disorders resulting from a primary defect in distal tubular net hydrogen secretion or from a reduced buffer trapping in the tubular lumen are called distal RTA. Hyperkalemic RTA may occur as a result of aldosterone deficiency or tubular insensitivity to its effects. The clinical classification of renal tubular acidosis has been correlated with our current physiological model of how the nephron excretes acid, and this has facilitated genetic studies that have identified mutations in several genes encoding acid and base ion transporters. Growth retardation is a consistent feature of RTA in infants. Identification and correction of acidosis are important in preventing symptoms and guide approved genetic counseling and testing.

Keywords

References

  1. Rodriguez-Soriano J, Edelmann CM. Renal Tubular Acidosis. Annual Review of Medicine 1969;20:363-82. https://doi.org/10.1146/annurev.me.20.020169.002051
  2. Nicoletta JA, Schwartz GJ. Distal renal tubular acidosis. Current Opinion in Pediatrics 2004;16:194-8. https://doi.org/10.1097/00008480-200404000-00014
  3. Kamel KS, Briceno LF, Sanchez MI, Brenes L, Yorgin P, Kooh SW, et al. A new classification for renal defects in net acid excretion. American journal of kidney diseases : the official journal of the National Kidney Foundation 1997;29:136-46. https://doi.org/10.1016/S0272-6386(97)90021-4
  4. Santos F, Chan JC. Renal tubular acidosis in children. Diagnosis, treatment and prognosis. Am J Nephrol 1986;6:289-95. https://doi.org/10.1159/000167177
  5. Quigley R. Proximal renal tubular acidosis. J Nephrol 2006;19:S41-5.
  6. Laing CM, Toye AM, Capasso G, Unwin RJ. Renal tubular acidosis: developments in our understanding of the molecular basis. The International Journal of Biochemistry & Cell Biology 2005;37:1151-61. https://doi.org/10.1016/j.biocel.2005.01.002
  7. Karet FE. Inherited Distal Renal Tubular Acidosis. Journal of the American Society of Nephrology 2002;13:2178-84. https://doi.org/10.1097/01.ASN.0000023433.08833.88
  8. Katzir Z, Dinour D, Reznik-Wolf H, Nissenkorn, A, Holtzman, E. Familial pure proximal renal tubular acidosis--a clinical and genetic study. Nephrol Dial Transplant 2008;23: 1211-5.
  9. Igarashi T, Sekine T, Inatomi J, Seki G. Unraveling the molecular pathogenesis of isolated proximal renal tubular acidosis. J Am Soc Nephrol 2002;13:2171-7. https://doi.org/10.1097/01.ASN.0000025281.70901.30
  10. VAN'T H. Molecular developments in renal tubulopathies. Arch Dis Child 2000;83:189-91. https://doi.org/10.1136/adc.83.3.189
  11. Baum M. The Fanconi syndrome of cystinosis: insights into the pathophysiology. Pediatric Nephrology 1998;12:492-7. https://doi.org/10.1007/s004670050495
  12. Coor C, Salmon RF, Quigley R, Marver, D, Baum, M. Role of adenosine triphosphate (ATP) and NaK ATPase in the inhibition of proximal tubule transport with intracellular cystine loading. J Clin Invest 1991;87:955-61. https://doi.org/10.1172/JCI115103
  13. Karet FE. Mechanisms in Hyperkalemic Renal Tubular Acidosis. Journal of the American Society of Nephrology 2009;20:251-4. https://doi.org/10.1681/ASN.2008020166
  14. Alper SL. Molecular physiology of SLC4 anion exchangers. Experimental Physiology 2005;91:153-61. https://doi.org/10.1113/expphysiol.2005.031765
  15. Alper SL. Molecular physiology and genetics of Na+-independent SLC4 anion exchangers. Journal of Experimental Biology 2009; 212:1672-83. https://doi.org/10.1242/jeb.029454
  16. Cheidde L, Vieira TC, Lima PRM, Saad STO, Heilberg IP. A Novel Mutation in the Anion Exchanger 1 Gene Is Associated With Familial Distal Renal Tubular Acidosis and Nephrocalcinosis. Pediatrics 2003;112: 1361-7. https://doi.org/10.1542/peds.112.6.1361
  17. Stover EH, Borthwick KJ, Bavalia C, Eady N, Fritz DM, Rungroj N, et al. Novel ATP6V1B1 and ATP6V0A4 mutations in autosomal recessive distal renal tubular acidosis with new evidence for hearing loss. Journal of Medical Genetics 2002;39:796-803. https://doi.org/10.1136/jmg.39.11.796
  18. Keven K, Ozturk R, Sengul S, Kutlay S, Ergun I, Erturk S, et al. Renal tubular acidosis after kidney transplantation-incidence, risk factors and clinical implications. Nephrology Dialysis Transplantation 2007;22: 906-10. https://doi.org/10.1093/ndt/gfl714
  19. Burgess JL, Birchall R. Nephrotoxicity of amphotericin B, with emphasis on changes in tubular function. The American Journal of Medicine 1972;53:77-84. https://doi.org/10.1016/0002-9343(72)90117-9
  20. Shah GN, Bonapace G, Hu PY, Strisciuglio P, Sly WS. Carbonic anhydrase II deficiency syndrome (osteopetrosis with renal tubular acidosis and brain calcification): Novel mutations in CA2 identified by direct sequencing expand the opportunity for genotypephenotype correlation. Human Mutation 2004;24:272.
  21. Oetliker OH, Zurbrugg RP. Renal Tubular Acidosis in Salt-Losing Syndrome of Congenital Adrenal Hyperplasia (CAH). J Clin Endocrinol Metab 1970;31:447-50. https://doi.org/10.1210/jcem-31-4-447
  22. Zennaro M, Lombes M. Mineralocorticoid resistance. Trends in Endocrinology and Metabolism 2004;15:264-70. https://doi.org/10.1016/j.tem.2004.06.003
  23. San-Cristobal P, de los Heros P, Ponce- Coria J, Moreno E, Gamba G. WNK Kinases, Renal Ion Transport and Hypertension. American Journal of Nephrology 2008;28:860-70. https://doi.org/10.1159/000139639
  24. Cope G. WNK1 Affects Surface Expression of the ROMK Potassium Channel Independent of WNK4. Journal of the American Society of Nephrology 2006;17:1867-74. https://doi.org/10.1681/ASN.2005111224
  25. Kuemmerle N, Krieg RJ, Jr., Latta K, Challa A, Hanna JD, Chan JC. Growth hormone and insulin-like growth factor in non-uremic acidosis and uremic acidosis. Kidney Int Suppl 1997;58:S102-5.
  26. Bagga A, Bajpai A, Menon S. Approach to renal tubular disorders. Indian journal of pediatrics 2005;72:771-6. https://doi.org/10.1007/BF02734150
  27. Fabris A, Lupo A, Bernich P, Abaterusso C, Marchionna N, Nouvenne A, et al. Long- Term Treatment with Potassium Citrate and Renal Stones in Medullary Sponge Kidney. Clin J Am Soc Nephrol 2010;5:1663-8. https://doi.org/10.2215/CJN.00220110
  28. Kim S, Lee JW, Park J, Na KY, Joo KW, Ahn C, et al. The urine-blood PCO2 gradient as a diagnostic index of H+-ATPase defect distal renal tubular acidosis. Kidney International 2004;66:761-7. https://doi.org/10.1111/j.1523-1755.2004.00801.x
  29. Sharma AP, Singh RN, Yang C, Filler G, Kapoor R, Sharma RK. Bicarbonate therapy improves growth in children with incomplete distal renal tubular acidosis. Pediatric Nephrology 2009;24:1509-16. https://doi.org/10.1007/s00467-009-1169-y
  30. Sharma AP, Sharma RK, Kapoor R, Kornecki A, Sural S, Filler G. Incomplete distal renal tubular acidosis affects growth in children. Nephrology Dialysis Transplantation 2007; 22:2879-85. https://doi.org/10.1093/ndt/gfm307

Cited by

  1. Distal Renal Tubular Acidosis with Nephrocalcinosis in a Patient with Primary Sjögren’s Syndrome vol.16, pp.4, 2012, https://doi.org/10.4235/jkgs.2012.16.4.229
  2. A Case of Renal Tubular Acidosis Associated With Graves’ Disease vol.17, pp.3, 2010, https://doi.org/10.4235/jkgs.2013.17.3.147
  3. Distal Renal Tubular Acidosis Caused by Tacrolimus in a Systemic Lupus Erythematosus Patient: A Case Report vol.89, pp.4, 2010, https://doi.org/10.3904/kjm.2015.89.4.478