비선형 고출력 증폭기의 선형화를 위한 SCPWL 모텔 기반의 디지털 사전왜곡기

A SCPWL Model-Based Digital Predistorter for Nonlinear High Power Amplifier Linearization

  • 서만중 (숭실대학교 정보통신전자공학부) ;
  • 전석훈 (숭실대학교 정보통신전자공학부) ;
  • 임성빈 (숭실대학교 정보통신전자공학부)
  • Seo, Man-Jung (School of Electronic Engineering, Soongsil University) ;
  • Jeon, Seok-Hun (School of Electronic Engineering, Soongsil University) ;
  • Im, Sung-Bin (School of Electronic Engineering, Soongsil University)
  • 투고 : 2010.06.08
  • 심사 : 2010.10.15
  • 발행 : 2010.10.25

초록

OFDM (Orthogonal Frequency Division Multiplexing) 시스템은 다수 반송파 전송의 특수한 형태로 주파수 선택적 페이딩이나 협대역 간섭에 대한 강건함이 증가하기 때문에 차세대 무선 광대역 통신 시스템의 전송 방식으로 큰 관성을 받고 있다. 하지만 출력 신호의 크기가 Rayleigh 분포를 갖기 때문에 무선 통신 환경에서 TWTA (Traveling Wave Tube Amplifier)와 같은 고출력 증폭기 (High Power Amplifier; HPA)의 비선형 특성으로 인하여 단일 반송파 전송 방식보다 심각한 비선형 왜곡이 발생하게 된다. 본 논문에서는 HPA의 비선형성에 의한 비선형 왜곡을 보상하기 위해 SCPWL (Simplicial Canonical Piecewise-Linear) 모델 기반의 새로운 디지털 사전왜곡기를 제안한다. 제안된 사전왜곡기의 성능평가를 위해 AWGN (Additive White Gaussian Noise) 채널 하에서 16-QAM과 64-QAM 변조 방식을 이용하고, 1024-point FFT/IFFT로 구현된 OFDM 시스템에서 다양한 실험을 실시하였다. 모의실험 결과, HPA에 의해 발생하는 비선형 왜곡을 효과적으로 보상함으로써 우수한 성능 향상이 있음을 확인하였다.

An orthogonal frequency division multiplexing (OFDM) system is a special case of multicarrier transmission, where a single data stream is transmitted over a number of lower-rate subcarriers. One of the main reasons to use OFDM is to increase robustness against frequency-selective fading or narrowband interference. However, in the radio systems the distortion introduced by high power amplifiers (HPA's) such as traveling wave tube amplifier (TWTA) considered in this paper, is also critical. Since the signal amplitude of the OFDM system is Rayleigh-distributed, the performance of the OFDM system is significantly degraded by the nonlinearity of the HPA in the OFDM transmitter. In this paper, we propose a simplicial canonical piecewise-linear (SCPWL) model based digital predistorter to compensate for nonlinear distortion introduced by an HPA in an OFDM system. Computer simulation is carried on an OFDM system under additive white Gaussian noise (AWGN) channels with 16-QAM and 64-QAM modulation schemes and modulator/demodulator implemented with 1024-point FFT/IFFT. The simulation results demonstrate that the proposed predistorter achieves significant performance improvement by effectively compensating for the nonlinearity introduced by the HPA.

키워드

참고문헌

  1. Ramjee Prasad, OFDM for Wireless Communications Systems, Artech House, 2004.
  2. L. J. Cimini, "Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing," IEEE Trans. Commun., vol. 33, no. 7, pp. 665-675, Jul. 1985. https://doi.org/10.1109/TCOM.1985.1096357
  3. S. C. Cripps, RF Power Amplifiers for Wireless Communications, Northwood, MA: Artech House, 1999.
  4. A. S. Wright and W. G. Durtler, "Experimental performance of an adaptive digital linearized power amplifier," IEEE Trans. Veh. Technol., vol. 41, no. 4, pp. 395-400, Nov. 1992. https://doi.org/10.1109/25.182589
  5. K. J. Muhonen, M. Kavehrad, and R. Krishnamoorthy, "Look-up table techniques for adaptive digital predistortion: a development and comparison," IEEE Trans. Veh. Technol., vol. 49, no. 5, pp. 1995-2002, Sep. 2000. https://doi.org/10.1109/25.892601
  6. A. N. D'Andrea, V. Lottici, and R. Reggiannini, "Efficient digital predistortion in radio realy links with nonlinear power amplifiers," IEE Proc. Commun., vol. 147, no. 3, pp. 175-179, Jun. 2000. https://doi.org/10.1049/ip-com:20000358
  7. D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, "A Generalized Memory Polynomial Model for Digital Predistortion of RF Power Amplifiers," IEEE Trans. Signal Process., vol. 54, no. 10, pp. 3852-3860, Oct. 2006. https://doi.org/10.1109/TSP.2006.879264
  8. P. Julian, A. Desages, and O.Agamennoni, "High level canonical piecewise linear representation using a simplicial partition," IEEE Trans. Circuits and Systems Part I, vol. 46, pp. 463-480, Apr. 1999. https://doi.org/10.1109/81.754847
  9. J. L. Figueroa, J. E. Cousseau, and R. J. P. de Figueiredo, "A low complexity simplicial canonical piece-wise linear adaptive filter," Circ., Syst., Signal Process. J., vol. 23, pp. 365-386, Oct. 2004. https://doi.org/10.1007/s00034-004-0808-6
  10. A. A. M. Saleh, "Frequency independent and frequency dependent nonlinear model of TWT amplifier," IEEE Trans. Commun., vol. 29, no. 11, pp. 1715-1721, Nov. 1981. https://doi.org/10.1109/TCOM.1981.1094911
  11. L. O. Chua and R. Ying, "Canonical Piecewise-Linear Analysis," IEEE Trans. Circuits Syst., vol. CAS-30, no. 3, pp. 125-140, Mar. 1983.
  12. L. O. Chua and A. C. Deng, "Canonical Piecewise-Linear Modeling," IEEE Trans. Circuits Syst., vol. CAS-33, no. 5, pp. 511-525, May 1986.
  13. C. Kahlert and L. O. Chua, "A Generalized Canonical Piecewise-Linear Representation," IEEE Trans. Circuits Syst., vol. 37, no. 3, pp. 373-383, Mar. 1990. https://doi.org/10.1109/31.52731
  14. J. N. Lin and R. Unbehauen, "Adaptive nonlinear digital filter with canonical piecewise-linear structure," IEEE Trans. Circuits Syst., vol. 37, pp. 347-353, 1990. https://doi.org/10.1109/31.52728
  15. M. Ghaderi, "Adaptive predistortion lineariser using polynomial functions," IEEE Proc. Commun., vol. 141, no. 2, pp. 49-55, Apr. 1994. https://doi.org/10.1049/ip-com:19941048
  16. S. C. Thompson, J. G. Proakis, and J. R. Zeidler, "The Effectiveness of Signal Clipping for PAPR and Total Degradation Reduction in OFDM Systems," IEEE Globecom 2005, vol. 5, pp. 2807-2811, Nov. 2005.
  17. H. A. Al-Asady and M. Ibnkahla, "Performance evaluation and total degradation of 16-QAM modulations over satellite channels," IEEE CCECE 2004, vol. 2, pp. 1187-1190, May 2004.
  18. 한창식, 서만중, 임성빈, "OFDM 시스템에서 시간 및 주파수 영역 클리핑의 Total Degradation 성능 평가," 대한전자공학회논문지, 제44권, 제7호, 17-22쪽. 2007년 7월.