Acknowledgement
Supported by : 우석대학교
References
- International Technology Roadmap for Semiconductors, "International Technology Roadmap for Semiconductors (ITRS) 2004," http://public.itrs.net, 2004.
- G. Bourianoff, "The future of nanocomputing," IEEE Computer, vol.38, no.8, pp.44-53, August 2003.
- S. C. Goldstein and M. Budiu, "Nanofabrics: spatial computing using molecular nanoelectronics," in Proc. 28th Int. Symp. Computer Architecture, 2001, pp.178-189, 2001.
- S. C. Goldstein and D. Rosewater, "Digital logic using molecular electronics," Int. Solid-State Circuits Conf., p.125, 2002.
- M. Mishra and S. Goldstein, "Scalable defect tolerance for molecular electronics," Workshop Non-Silicon Computation (NSC-1), p.78, 2002.
- T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung and C. M. Lieber, "Carbon nanotube based nonvolatile random access memory for molecular computing," Science, vol.289, pp.94-97, 2000. https://doi.org/10.1126/science.289.5476.94
- P. J. Kuekes, J. R. Heath, and R. S. Williams, "Molecular wire crossbar memory," U.S. Patent 6 128 214, October 2000.
- Y. Chen, G. Jung, D. A. A. Ohlberg, X. Li, D. R. Stewart, J. O. Jeppesen, K. A. Nielsen, J. F. Stoddart and R. S. Williams, "Nanoscale molecular- switch crossbar circuits," Nanotechnology, no.14, pp.462-468, 2003.
- M. Ziegler and M. Stan, "Design and analysis of crossbar circuits for molecular nanoelectronics," IEEE Conf. Nanotechnology (IEEE-NANO), pp.323-327, 2002.
- P. J. Kuekes, J. R. Heath and R. S. Williams, "Molecular-wire crossbar interconnect (MWCI) for signal routing and communications," U.S. Patent 6 314 019, November 2001.
- P. J. Kuekes and R. S. Williams, "Demultimplexer for a molecular wire crossbar network (MWCN DEMUX)," U.S. Patent 6 256 767, July 2001.
- M. Ziegler and M. Stan, "A case for CMOS/nano co-design," Int. Conf. Computer Aided Design (ICCAD), pp.348-352, 2002.
- M. Stan, "A scaling scenario for nanoelectronic technologies," Georgia Tech Conf. Nanoscience and Nanotechnology, p.103, 2001.
- N. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P. Petroff and J. Heath, "Ultrahighdensity nanowire lattices and circuits," Science, vol.300, p.112-115, April 2003. https://doi.org/10.1126/science.1081940
- S. R. Nicewarner-Pena, S. Raina, G. P. Goodrich, N. V. Fedoroff and C. D. Keating, "Hybridization and extension of Au nanoparticle-bound oligonucleotides," Journal of American Chem. Soc., vol.124, pp.7314-7323, 2002. https://doi.org/10.1021/ja0177915
- Y. Huang, X. Duan, Q. Wei and C. M. Lieber, "Directed assemble of one-dimensional nanostructures into functional networks," Science, vol.291, pp.630-633, January 2001. https://doi.org/10.1126/science.291.5504.630
- Y. Huang, X. Duan, Y. Cui, L. Lauhon, K. Kim and C. M. Lieber, "Logic gates and computation from assembled nanowire building blocks," Science, vol.294, pp.1313-1317, 2001. https://doi.org/10.1126/science.1066192
- Y. Cui and C. M. Lieber, "Functional nanoscale electronic devices assembled using silicon nanowire building blocks," Science, vol.291, pp.851-853, February 2001. https://doi.org/10.1126/science.291.5505.851
- J. Huang, M. B. Tahoori and F. Lombardi, "On the defect tolerance of nano-scale two-dimensional crossbars," IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, pp.96-104, October 2004.
- M. Jacome, C. He, G. de Veciana, and S. Bijansky, "Defect tolerant probabilistic design paradigm for nanotechnolo-gies," IEEE/ACM Design Automation Conference (DAC), pp.1-6, 2004.
- M. Tehranipoor, "Defect Tolerance for Molecular Electronics-Based NanoFabrics Using Built-In Self-Test Procedure," IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, Submitted for publication.
- J. R. Heath, P. J. Kuekes, G. S. Snider, and R. S. Williams, "A defect-tolerant computer architecture: Opportunities for nanotechnology," Science, vol.280, pp.1716-1721, 1998. https://doi.org/10.1126/science.280.5370.1716
- D. Whang, S. Jin and C. M. Lieber, "Large-Scale Hierarchical Organization of Nanowires for Functional Nanosystems," Japanese Journal of Applied Physics, vol.43, no.7B, 2004.
- A. Bachtold, P. Hadley, T. Nakanishi and C. Dekker, "Logic circuits with carbon nanotube transistors," Science, vol.294, pp.1317-1320, November 2001. https://doi.org/10.1126/science.1065824
- V. Derycke, R. Martel, J. Appenzeller and Ph. Avouris, "Carbon nanotube inter- and intramolecular logic gates," Nano Letter, vol.1, no.9, pp.453-456, 2001. https://doi.org/10.1021/nl015606f
- C. Soh, C. Quate, C. Morpurgo, C. Marcus, C. Kong and C. Dai, "Integrated nanotube circuits: controlled growth and ohmic contacting of singlewalled carbon nanotubes," Appled Physics Letter, vol.75, no.5, pp.627-629, 1999. https://doi.org/10.1063/1.124462
- S. J. Trans, A. R. M. Verschueren and C. Dekker, "Room-temperature transistor based on a single carbon nanotube," Nature, vol.393, pp.49-51, May 1998. https://doi.org/10.1038/29954
- H. Finkelstein, P. M. Asbeck and S. Esener, "Architecture and analysis of a self-assembled 3D array of carbon nanotubes and molecular memories," IEEE Conference on Nanotechnology, pp.12-14, August 2003.
- C. Dekker, "Carbon nanotubes as molecular quantum wires," Physics Today, pp.22-28, May 1999.
- M. Ziegler, G. Rose and M. Stan, "A universal device model for nanoelectronic circuit simulation," IEEE Conf. Nanotechnology (IEEE-NANO), pp.83- 88, 2002.
- M. Bhattacharya and P. Mazumder, "Augmentation of SPICE for simulation of circuits containing resonant tunneling diodes," IEEE Trans. Computer-Aided Design, vol.20, pp.39-50, January 2001. https://doi.org/10.1109/43.905673
- J. Chen, W. Wang, M. A. Reed, M. Rawlett, D. W. Price and J. M. Tour, "Room-Temperature Negative Differential Resistance in Nanoscale Molecular Junctions," Appl. Phys. Lett., vol.77, p.1224, 2000. https://doi.org/10.1063/1.1289650
- J. Chen, M. A. Reed, A. M. Rawlett and J. M. Tour, "Large on-off ratios and negative differential resistance in a molecular electronic device," Science, vol.286, pp.1550-1552, November 1999. https://doi.org/10.1126/science.286.5444.1550
- R. H. Mathews, J. P. Sage, T. C. L. G. Sollner, S. D. Calawa, C. L. Chang-Lee Chen, L. J. Mahoney, P. A. Maki and K. M. Molvar, "A new RTD-FET logic family," Proc. IEEE, vol.87, pp.596-605, April 1999. https://doi.org/10.1109/5.752517
- Y. S. Yu, Y. I. Jung, J. H. Park, S. W. Hwang and D. Ahn, "Simulation of single-electron/CMOS hybrid circuits using SPICE macromodeling," J. Korean Phys. Soc., vol.20, no.35, pp.991-994, 1999.
- P. Franzon and D. Nackashi, "Moletronics: a circuit design perspective," Int. Conf. SPIE Smart Electronics and MEMS, vol.4236, pp.80-88, 2000.
- J. C. Ellenbogen and J. C. Love, "Architectures for molecular electronic computers. I. Logic structures and an adder designed from molecular electronic diodes," Proc. IEEE, vol.88, pp.386-426, March 2000. https://doi.org/10.1109/5.838115
- C. J. Christian, J. Amsinck, D. P. David, P. Nackashi, N. H. Neil, H. D. Spigna and P. D. Franzon, "Electrically accessible molecular memories," IEEE J. Nanotechnol., submitted for publication.
- R. M. Metzger et al, "Unimolecular electrical rectification in hexadecylquinolinium tricyanoquinodimethanide," J. Amer. Chem. Soc., vol.119, pp.10455-10466, 1997. https://doi.org/10.1021/ja971811e
- A. DeHon, "Array-Based Architecture for FETBased, Nanoscale Electronics," IEEE Transactions on Nanotechnology, vol.2, no.1, pp.23-32, March 2003. https://doi.org/10.1109/TNANO.2003.808508
- A. Dehon, M. J. Wilson, "Nanowire-Based Sublithographic Programmable Logic Arrays," FPGA'04, Monterey, CA, February, 2004.
- H. Naeimi and A. DeHon, "A greedy algorithm for tolerating defective crosspoints in nanoPLA design," IEEE International Conference on Field-Programmable Technology, pp.49-56, 2004.
- H. C. Liang, W. C. Ho and M. C. Cheng, "Identify unrepairability to speed-up spare allocation for repairing memories," IEEE Transactions on Reliability, vol.54, no.2, pp.358-365, June 2005. https://doi.org/10.1109/TR.2005.847248
- J. F. Li, J. C. Yeh, R. F. Huang and C. W. Wu, "A Built-In Self-Repair Design for RAMs With 2-D Redundancy," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.13, no.6, pp.742-745, June 2005. https://doi.org/10.1109/TVLSI.2005.848824
- C. T. Huang and C. F. Wu, J. F. Li and C. W. Wu, "Built-in redundancy analysis for memory yield improvement," IEEE Transactions on Reliability, vol.52, no.4, pp.386-399, December 2003. https://doi.org/10.1109/TR.2003.821925
- M. Choi and N. Park, "Dynamic yield analysis and enhancement of FPGA reconfigurable memory systems," IEEE Transactions on Instrumentation and Measurement, vol.51, no.6, pp.1300-1311, December 2002. https://doi.org/10.1109/TIM.2002.808046
- W. K. Huang, Y.-N. Shen and F. Lombardi, "New approaches for the repairs of memories with redundancy by row/column deletion for yield enhancement," IEEE Transactions on Computer- Aided Design of Integrated Circuits and Systems, vol.9, no.3, pp.323-328, Mar 1990. https://doi.org/10.1109/43.46807
- Y. Yallambalase and M. Choi, "Cost-driven repair optimization of reconfigurable nanowire crossbar systems with clustered defects," Journal of Systems Architecture, vol.54, no.8, pp.729-741, 2008. https://doi.org/10.1016/j.sysarc.2008.01.001
- S. C. Smith, R. F. DeMara, J. S. Yuan, D. Ferguson, and D. Lamb, "Optimization of NULL Convention Self-Timed Circuits," Integration, The VLSI Journal, vol.37, no.3, pp.135-165, 2004. https://doi.org/10.1016/j.vlsi.2003.12.004
- R. Bonam, S. Chaudhary, Y. Yellambalase and M. Choi, "Clock-Free Nanowire Crossbar Architecture based on Null Convention Logic (NCL)," 7th IEEE International Conference on Nanotechnology (IEEENano), Apr 2007.
- S. Zhang, M. Choi, N. Park and F. Lombardi "Cost-Driven Optimization of Fault Coverage in Combined Built-In Self-Test/Automated Test Equipment Testing," IMTC 04, 2004.