DOI QR코드

DOI QR Code

Computation of Ground Reaction Forces During Gait using Kinematic Data

보행의 운동학적 데이터를 이용한 지면반발력 계산

  • Song, Sung-Jae (School of Mechanical and Automotive Engineering, Gangneung Wonju Nat'l Univ.) ;
  • Kim, Sei-Yoon (School of Mechanical and Automotive Engineering, Gangneung Wonju Nat'l Univ.) ;
  • Kim, Young-Tae (Dept. of Electrical Engineering, Gangneung Wonju Nat'l Univ.) ;
  • Lee, Sang-Don (Dept. of Electrical Engineering, Gangneung Wonju Nat'l Univ.)
  • 송성재 (강릉원주대학교 기계자동차공학부) ;
  • 김세윤 (강릉원주대학교 기계자동차공학부) ;
  • 김영태 (강릉원주대학교 전기공학과) ;
  • 이상돈 (강릉원주대학교 전기공학과)
  • Published : 2010.04.01

Abstract

The purpose of this study is to compute the ground reaction forces during gait in the absence of force plates. The difficulties in using force plates for hemiparetic patients inspired us to initiate this study. Level-walking experiments were performed using a three-dimensional motion analysis system with synchronized force plates. Kinematic data were obtained from the three-dimensional trajectories of reflective markers. Gait events were also detected from the kinematic data. The human body was modeled as 13 rigid segments. The mass and the center of mass of each segment were determined from anthropometric data. Vertical ground-reaction forces obtained from the kinematic data were in good agreement with those obtained using the force plate. The computed and measured values of anterior and lateral ground reaction showed similar tendencies. The computation results can be used as the basic data for inverse dynamic analysis.

본 연구의 목적은 편마비 환자와 같이 정상 보행이 아닌 경우의 보행 실험에서 힘측정판을 이용한 지면반발력의 측정이 매우 어려웠던 경험에서 출발하여 힘측정판을 사용하지 않고 운동학적 데이터만으로 보행 중 발생하는 지면반발력을 계산하는 것이다. 3차원 동작분석 시스템과 동기화된 힘측정판을 이용하여 보행실험을 실시하여 3차원 동작분석 시스템으로부터 보행의 운동학적 데이터를 추출하였고 이로부터 보행주기를 검출하였다. 인체를 13개의 체절로 모델링하고 각 체절의 거동이 추출한 운동학적 데이터를 따르도록 하였다. 각 체절의 질량과 질량 중심은 인체측정학의 자료를 이용하였다. 보행실험에서 측정한 지면반발력과 운동학적 데이터만을 이용한 계산 결과의 비교에서 크기가 가장 큰 수직방향은 잘 일치하였고 전후방향이나 횡방향도 유사한 경향을 보였다. 본 계산 결과는 보행에 관한 역동역학 해석의 기본 자료로 활용할 수 있다.

Keywords

References

  1. Koopman, B., Grootenboer, H. J. and Jones, H. J., 1995, "An Inverse Dynamics Model for the Analysis, Reconstruction and Prediction of Bipedal Walking," Journal of Biomechanics, Vol. 28, No. 11, pp. 1369-1376. https://doi.org/10.1016/0021-9290(94)00185-7
  2. Ren, L., Jones, R. K. and Howard, D., 2008, "Whole Body Inverse Dynamics over a Complete Gait Cycle Based only on Measured Kinematics," Journal of Biomechanics, Vol. 41, pp. 2750-2759. https://doi.org/10.1016/j.jbiomech.2008.06.001
  3. Bobbert, M. F., Schamhardt, H. C. and Nigg, B. M., 1991, "Calculation of Vertical Ground Reaction Force Estimates During Running from Positional Data," Journal of Biomechanics, Vol. 24, No. 12, pp. 1095-1105. https://doi.org/10.1016/0021-9290(91)90002-5
  4. Song, S. J., 2004, "An Inverse Dynamic Analysis of Lower Limbs Duing Gait," Journal of Biomedical Engineering Research, Vol. 25, No. 1, pp. 301-307
  5. Thelen, D. G. and Anderson, F. C., 2006, "Using Computed Muscle Control to Generate Forward Dynamic Simulations of Human Walking from Experimental Data," Journal of Biomechanics, Vol. 39, pp. 1107-1115. https://doi.org/10.1016/j.jbiomech.2005.02.010
  6. Riley, P. O. and Kerrigan, D. C., 1998, "Torque Ation of Two-joint Mscles in the Sing Priod of Siff-legged Git a Foward Dynamic Model Analysis," Journal of Biomechanics, Vol. 31, pp. 835-840. https://doi.org/10.1016/S0021-9290(98)00107-9
  7. Neptune, R. R., Burnfield, J. M. and Mulroy, S. J., 2007, "The Neuromuscular Demands of Toe Walking : A Forward Dynamics Simulation Analysis," Journal of Biomechanics, Vol. 40, pp. 1293-1300. https://doi.org/10.1016/j.jbiomech.2006.05.022
  8. Delp, S. L., Anderson, F. C., Arnold, A. S., Loan, P., Habib, A., John, C. T., Guendelman, E. and Thelen, D. G., 2007, "OpenSim: Open Source Software to Create and Analyze Dynamic Simulations of Movement," IEEE Trans. Biomedical Engineering, Vol. 54, No. 11, pp. 1940-1950. https://doi.org/10.1109/TBME.2007.901024
  9. Brandell, B. R., 1982, "Development of a Universal Control Unit for Functional Electrical Stimulation(FES)," American Journal of Physical Medicine, Vol. 61, No. 6, pp. 279-301.
  10. Dai, R., Andrews, B. J., James, K. B. and Wieler, M., 1996, "Application of Tilt Sensors in Functional Electrical Stimulation," IEEE Trans. Rehabilitation Engineering, Vol. 4, pp. 63-72. https://doi.org/10.1109/86.506403
  11. Evans, A. L., Duncan, G. and Gilchrist, W., 1991, "Recording Accelerations in Body Movements," Medical and Biological Engineering and Computing, Vol. 6, pp. 102-104.
  12. Tong, K. and Granat, M. H., 1999, "A Practical Gait Analysis System Using Gyroscopes." Medical Engineering & Physics, Vol. 21, pp. 87-94. https://doi.org/10.1016/S1350-4533(99)00030-2
  13. Hreljac, A. and Marshall, R. N., 2000, "Algorithms to Determine Event Timing During Normal Walking Using Kinematic Data," Journal of Biomechanics, Vol. 33, pp. 783-786. https://doi.org/10.1016/S0021-9290(00)00014-2
  14. O'Connor, C. M., Thorpe, S. K., O'Malley, M. and Vaughan, C. L., 2007, "Automatic Detection of Gait Events Using Kinematic Data," Gait & Posture, Vol. 25, pp. 469-474. https://doi.org/10.1016/j.gaitpost.2006.05.016
  15. Desailly, E., Daniel, Y., Sardain, P. and Lacouture, P., 2009, "Foot Contact Event Detection Using Kinematic Data in Cerebral Palsy Children and Normal Adult Gait," Gait & Posture, Vol. 29, pp. 76-80. https://doi.org/10.1016/j.gaitpost.2008.06.009
  16. Davis, R. B., Tyburski, D. and Gage, J. R., 1991, "A Gait Analysis Data Collection and Reduction Technique," Human Movement, Vol. 10, pp. 575-587. https://doi.org/10.1016/0167-9457(91)90046-Z
  17. Woltring, H. J., 1985, "On Optimal Smoothing and Derivative Estimation from Noisy Displacement Data in Biomechanics," Human Movement Science, Vol. 4, pp. 229-245. https://doi.org/10.1016/0167-9457(85)90004-1
  18. Winter, D. A., 1990, Biomechanics and Motor Control of Human Movement, John Wiley & Sons, pp.56-57.
  19. Park, S. W., 2009, Sensor Systems for Gait Phase Detection, Master Thesis, Yonsei University

Cited by

  1. Pressure Analysis of Plantar Musculoskeletal Fascia while Walking using Finite Element Analyses vol.36, pp.8, 2012, https://doi.org/10.3795/KSME-A.2012.36.8.913