DOI QR코드

DOI QR Code

Synthesis and Characterization of Highly Fluorescent and Thermally Stable π-Conjugates involving Spiro[fluorene-9,4'-[4H]indeno[1,2-b]furan]

  • Kowada, Toshiyuki (Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University) ;
  • Ohe, Kouichi (Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University)
  • Published : 2010.03.20

Abstract

Spiro[fluorene-9,4'-[4H]indeno[1,2-b]furan] was synthesized, and its $\pi$-conjugation was efficiently elongated using palladium-catalyzed C-H arylation of a furan moiety. The resulting $\pi$-conjugated compounds showed intense fluorescence and extremely high thermal stability.

Keywords

References

  1. Mullen, K.; Wegner, G. Electronic Materials: The Oligomer Approach; Wiley-VCH: Weinheim; New York, 1998.
  2. Murphy, A. R.; Frechet, J. M. Chem. Rev. 2007, 107, 1066. https://doi.org/10.1021/cr0501386
  3. Segura, J. L.; Martín, N.; Guldi, D. M. Chem. Soc. Rev. 2005, 34, 31. https://doi.org/10.1039/b402417f
  4. Fichou, D. Handbook of Oligo- and Polythiophenes; Wiley-VCH: Weinheim, 1998.
  5. Mishra, A.; Ma, C.-Q.; Bauerle, P. Chem. Rev. 2009, 109, 1141. https://doi.org/10.1021/cr8004229
  6. Merphy, A. R.; Frechet, J. M.; Chang, P.; Lee, J.; Subramanian, V. J. Am. Chem. Soc. 2004, 126, 1596. https://doi.org/10.1021/ja039529x
  7. Ie, Y.; Umemoto, Y.; Okabe, M.; Kusunoki, T.; Nakayama, K.-i.; Pu, Y.-J.; Kido, J.; Tada, H.; Aso, Y. Org. Lett. 2008, 10, 833. https://doi.org/10.1021/ol7029678
  8. Mushrush, M.; Facchetti, A.; Lefenfeld, M.; Katz, H. E.; Marks, T. J. J. Am. Chem. Soc. 2003, 125, 9414. https://doi.org/10.1021/ja035143a
  9. Apperloo, J. J.; Groenendaal, L.; Verheyen, H.; Jayakannan, M.; Janssen, R. A. J.; Dkhissi, A.; Beljonne, D.; Lazzaroni, R.; Bredas, J.-L. Chem. Eur. J. 2002, 8, 2384. https://doi.org/10.1002/1521-3765(20020517)8:10<2384::AID-CHEM2384>3.0.CO;2-L
  10. Yoon, M.-H.; Facchetti, A.; Stern, C. E.; Marks, T. J. J. Am. Chem. Soc. 2006, 128, 5792. https://doi.org/10.1021/ja060016a
  11. Hotta, S.; Ichino, Y.; Yoshida, Y.; Yoshida, M. J. Phys. Chem. B 2000, 104, 10316. https://doi.org/10.1021/jp002166s
  12. Lee, S. A.; Hotta, S.; Nakanishi, F. J. Phys. Chem. A 2000, 104, 1827. https://doi.org/10.1021/jp9930604
  13. Ishikawa, M.; Hibino, R.; Inoue, M.; Haritani, T.; Hotta, S.; Koyama, T.; Taniguchi, Y. Adv. Mater. 2003, 15, 213. https://doi.org/10.1002/adma.200390048
  14. Zhang, L.-Z.; Chen, C.-W.; Lee, C.-F.; Wu, C.-C.; Luh, T.-Y. Chem. Commun. 2002, 2336.
  15. Lee, C.-F.; Liu, C.-Y.; Song, H. -C.; Luo, S.-J.; Tseng, J.-C.; Tso, H.-H.; Luh, T.-Y. Chem. Commun. 2002, 2824.
  16. Kim, J.-S.; Ahn, H. K.; Ree, M. Tetrahedron Lett. 2005, 46, 277. https://doi.org/10.1016/j.tetlet.2004.11.054
  17. Ismail, M. A.; Boykin, D. W.; Stephens, C. E. Tetrahedon Lett. 2006, 47, 795. https://doi.org/10.1016/j.tetlet.2005.11.091
  18. Chen, I-W. P.; Fu, M.-D.; Tseng, W.-H.; Chen, C.-h.; Chou, C.-M.; Luh, T.-Y. Chem. Commun. 2007, 3074.
  19. Adachi, C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1990, 56, 799. https://doi.org/10.1063/1.103177
  20. Liu, C.-Y.; Luh, T.-Y. Org. Lett. 2002, 4, 4305. https://doi.org/10.1021/ol026941t
  21. Tseng, J.-C.; Huang, S.-L.; Lin, C.-L.; Lin, H.-C.; Jin, B.-Y.; Chen, C.-Y.; Yu, J.-K.; Chou, P.-T.; Luh, T.-Y. Org. Lett. 2003, 5, 4381. https://doi.org/10.1021/ol0356688
  22. Lin, C.-L.; Yeh, M.-Y.; Chen, C.-H.; Sudhakar, S.; Luo, S.-J.; Hsu, Y.-C.; Huang, C.-Y.; Ho, K.-C.; Luh, T.-Y. Chem. Mater. 2006, 18, 4157. https://doi.org/10.1021/cm0602693
  23. Xie, L.-H.; Fu, T.; Hou, X.-Y.; Tang, C.; Hua, Y.-R.; Wang, R.-J.; Fan, Q.-L.; Peng, B.; Wei, W.; Huang, W. Tetrahedron Lett. 2006, 47, 6421. https://doi.org/10.1016/j.tetlet.2006.06.143
  24. Mitschke, U.; Bauerle, P. J. Chem. Soc., Perkin Trans. 1 2001, 740.
  25. Ong, T.-T.; Ng, S.-C.; Chan, H. S. O.; Vardhanan, R. V.; Kumura, K.; Mazaki, Y.; Kobayashi, K. J. Mater. Chem. 2003, 13, 2185. https://doi.org/10.1039/b304377k
  26. Xie, L.-H.; Hou, X.-Y.; Hua, Y.-R.; Huang, Y.-Q.; Zhao, B.-M.; Liu, F.; Peng, B.; Wei, W.; Huang, W. Org. Lett. 2007, 9, 1619. https://doi.org/10.1021/ol070006u
  27. Kowada, T.; Matsuyama, Y.; Ohe, K. Synlett 2008, 1902.
  28. Ackermann, L. Modern Arylation Methods; Wiley-VCH: Weinheim, 2009.
  29. Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174. https://doi.org/10.1021/cr0509760
  30. Satoh, T.; Miura, M. Chem. Lett. 2007, 36, 200. https://doi.org/10.1246/cl.2007.200
  31. Kakiuchi, F.; Kochi, T. Synthesis 2008, 3013.
  32. Ohta, A.; Akita, Y.; Ohkuwa, T.; Chiba, M.; Fukunaga, R.; Miyafuji, A.; Nakata, T.; Tani, N.; Aoyagi, Y. Heterocycles 1990, 31, 1951. https://doi.org/10.3987/COM-90-5467
  33. Zhao, J.; Yue, D.; Campo, M. A.; Larock, R. C. J. Am. Chem. Soc. 2007, 129, 5288. https://doi.org/10.1021/ja070657l
  34. Campeau, L.-C.; Parisien, M.; Jean, A.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 581. https://doi.org/10.1021/ja055819x
  35. Beccalli, E. M.; Broggini, G.; Martinelli, M.; Paladino, G.; Zoni, C. Eur. J. Org. Chem. 2005, 2051.
  36. Gottumukkala, A. L.; Doucet, H. Adv. Synth. Catal. 2008, 350, 2183. https://doi.org/10.1002/adsc.200800410
  37. Chackal-Catoen, S.; Miao, Y.; Wilson, W. D.; Wenzler, T.; Brun, R.; Boykin, D. W. Bioorg. Med. Chem. 2006, 14, 7434. https://doi.org/10.1016/j.bmc.2006.07.024
  38. Battace, A.; Lemhadri, M.; Zair, T.; Doucet, H.; Santelli, M. Organometallics 2007, 26, 472. https://doi.org/10.1021/om0610243
  39. Parisien, M.; Valette, D.; Fagnou, K. J. Org. Chem. 2005, 70, 7578. https://doi.org/10.1021/jo051039v
  40. Roger, J.; Doucet, H. Org. Biomol. Chem. 2008, 6, 169. https://doi.org/10.1039/b715235c
  41. McClure, M. S.; Glover, B.; McSorley, E.; Millar, A.; Osterhout, M. H.; Roschangar, F. Org. Lett. 2001, 3, 1677. https://doi.org/10.1021/ol0158866
  42. Glover, B.; Harvey, K. A.; Liu, B.; Sharp, M. J.; Tymoschenko, M. F. Org. Lett. 2003, 5, 301. https://doi.org/10.1021/ol027266q
  43. Martins, A.; Alberico, D.; Lautens, M. Org. Lett. 2006, 8, 4827. https://doi.org/10.1021/ol061859+
  44. Nakano, M.; Tsurugi, H.; Satoh, T.; Miura, M. Org. Lett. 2008, 10, 1851. https://doi.org/10.1021/ol800466b
  45. Lindahl, K.-F.; Carroll, A.; Quinn, R. J.; Ripper, J. A. Tetrahedron Lett. 2006, 47, 7493. https://doi.org/10.1016/j.tetlet.2006.08.032
  46. Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. Synthesis 2008, 136.
  47. Pozgan, F.; Roger, J.; Doucet, H. Chem. Sus. Chem. 2008, 1, 404. https://doi.org/10.1002/cssc.200700166
  48. Yao, T.; Zhang, X.; Larock, R. C. J. Org. Chem. 2005, 70, 7679. https://doi.org/10.1021/jo0510585
  49. Derridj, F.; Gottumukkala, A. L.; Djebbar, S.; Doucet, H. Eur. J. Inorg. Chem. 2008, 2550.
  50. Liegault, B.; Lapointe, D.; Caron, L.; Vlassova, A.; Fagnou, K. J. Org. Chem. 2009, 74, 1826. https://doi.org/10.1021/jo8026565
  51. Matsuda, S.; Takahashi, M.; Monguchi, D.; Mori, A. Synlett 2009, 1941.
  52. For rhodium-catalyzed direct arylation of furans, see: Yanagisawa, S.; Sudo, T.; Noyori, R.; Itami, K. J. Am. Chem. Soc. 2006, 128, 11748. https://doi.org/10.1021/ja064500p
  53. Lafrance, M.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 16496. https://doi.org/10.1021/ja067144j
  54. Garcia-Cuadrado, D.; de Mendoza, P.; Braga, A. A. C.; Maseras, F.; Echavarren, A. M. J. Am. Chem. Soc. 2007, 129, 6880. https://doi.org/10.1021/ja071034a
  55. Ackermann, L.; Althammer, A.; Fenner, S. Angew. Chem. Int. Ed. 2009, 48, 201. https://doi.org/10.1002/anie.200804517
  56. Watanabe, T.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett. 2008, 10, 1759 https://doi.org/10.1021/ol800425z
  57. Saragi, T. P. I.; Spehr, T.; Siebert, A.; Fuhrmann-Lieker, T.; Salbeck, J. Chem. Rev. 2007, 107, 1011. https://doi.org/10.1021/cr0501341
  58. Tang, S.; Liu, M.; Gu, C.; Zhao, Y.; Lu, P.; Lu, D.; Liu, L.; Shen, F.; Yang, B.; Ma, Y. J. Org. Chem. 2008, 73, 4212. https://doi.org/10.1021/jo8006094
  59. Wei, Y.; Samori, S.; Tojo, S.; Fujitsuka, M.; Lin, J.-S.; Chen, C.-T.; Majima, T. J. Am. Chem. Soc. 2009, 131, 6698. https://doi.org/10.1021/ja8090005
  60. Jiang, Z.; Yao, H.; Zhang, Z.; Yang, C.; Liu, Z.; Tao, Y.; Qin, J.; Ma, D. Org. Lett. 2009, 11, 2607. https://doi.org/10.1021/ol9008816
  61. Becht, J.-M.; Ngouela, S.; Wagner, A.; Mioskowski, C. Tetrahedron 2004, 60, 6853. https://doi.org/10.1016/j.tet.2004.06.010

Cited by

  1. Palladium-catalysed direct polyheteroarylation of di- or tribromobenzene derivatives: a one step synthesis of conjugated poly(hetero)aromatics vol.1, pp.8, 2011, https://doi.org/10.1039/c1ra00370d
  2. Spirobifluorene-Based Conjugated Polymers for Polymer Solar Cells with High Open-Circuit Voltage vol.45, pp.7, 2012, https://doi.org/10.1021/ma202752h
  3. Reactivity of bromofluorenes in palladium-catalysed direct arylation of heteroaromatics vol.4, pp.10, 2014, https://doi.org/10.1039/C4CY00771A
  4. Structures, Lewis Acidities, Electrophilicities, and Protecting Group Abilities of Phenylfluorenylium and Tritylium Ions vol.23, pp.3, 2016, https://doi.org/10.1002/chem.201603963
  5. ChemInform Abstract: Synthesis and Characterization of Highly Fluorescent and Thermally Stable π-Conjugates Involving Spiro[fluorene-9,4′-[4H]indeno[1,2-b]furan]. vol.41, pp.30, 2010, https://doi.org/10.1002/chin.201030108
  6. Novel dispirobifluorenes and indeno-spirobifluorenes: syntheses and properties vol.67, pp.6, 2010, https://doi.org/10.1016/j.tet.2010.11.092
  7. Palladium-catalyzed 2,5-diheteroarylation of 2,5-dibromothiophene derivatives vol.10, pp.None, 2014, https://doi.org/10.3762/bjoc.10.309
  8. Design, synthesis, molecular docking, anti-proliferative and anti-TB studies of 2H-chromen-8-azaspiro[4.5]decane-7,9-dione conjugates vol.1227, pp.None, 2010, https://doi.org/10.1016/j.molstruc.2020.129530